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PREFACE

On December 9-12, 1992 over 150 scientists from around the world gathered
in Columbia to celebrate the sixtieth birthday of Yakir Aharonov. The major portion
of this celebration was a three day conference on the Fundamental Aspects of
Quantum Theory. This volume is the proceedings of that conference and a brief
biographical sketch of Yakir Aharonov as presented by Alex Pines after the
barquet.

Among the topics discussed were the Aharonov-Bohm effect, geometric
phases, gauge fields, black holes, quantum gravity, non-locality and geometry, spin
and statistics, phenomenology, and quantum reality. These topics were chosen since
they are all areas in which Yakir Aharonov has made contributions and
suggestions.

Years ago developments in the fundamentals of quantum thecry were
primarily of interest only to theoreticians. Topics such as quantum gravity, non-
locality and geometry, and black holes are still with us today; however, as can be
seen from the table of contents, applications abound. Experiments have been
performed showing flux lines, quantum interferometers are in use, and condensed
matter applications and statistical applications exist. Recent satellite data provides
information on black holes. The Aharonov-Bohm effect is now a laboratory
phenomenon. Yakir Aharonov has recently demonstrated the reality of the
wavefunction for a single particle.

In the years since the Aharonov-Bohm effect was proposed, Yakir Aharonov
has made important suggestions and contributions to many areas related to
fundamcntal interpretation of quantum theory. He has always taken the viewpoint
that quantum theory must be studied to develop the necessary intuition to be able
to understand what the theory is really telling us. Without this intuition we will
often not ask the "right" question, and hence, misinterpret the basic nature of
reality. That is, if we ask classical questions, we will see only some aspects of
quantum theory. Intuition will enable ue to ask the proper quantum gquestion to
discover the full implication of the theory. We dedicate this volume to him.

We had planned to have David Bohm, FRS, as a speaker at these sessions
and to help honor his former student. We deeply regret his untimely death. He was
a great physicist with a deep understanding of quantum theory and a humanistic
person with a wide range of interests.

We express our appreciation to the aid provided by the members of the
Scientific Advisory Committee: Michael Berry (Bristol), David Bohm (London),
Roger Penrose (Oxford), Norman Ramsey (Harvard), Charles Townes (Berkeley),
dohn \Wneeler (Princeton) and Chen Ning Yang (Stony Brook). We also express out
sincere appreciation te the other members of the Local Organizing Committee: Chi-
Kwan Au, Frank Avignone, Richard Creswick, Horacio Farach, James Knight,
Pawel Mazur, and Carl Rosenfeld. Without the help of both of these groups, this
conference would not have been possible. We also pgratefully acknowledge the
generous suppaort for this conference provided by President Palms of the University
of South Carolina, the National Science Foundation, the Department of Energy, the
Office of Naval Research, and Hitachi Ltd.

University of South Carolina, Columbia Jeeva 8. Anandan
stember 1994 John L. Satko
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After-Banquet Talk in Honor of Aharonov’s 60th Birthday

Symposium on Fundamental Aspects of Quantum Theory
Columbia, South Carolina, December 10-12, 1992

A. Pines
University of California, Berkeley

Yakir Aharonov: From A to B

Following the dictates of David Mermin, I have prepared some spontaneous remarks:

Ladies and Gentiles,

You sec before you a most reluctant after-dinner speaker. Someone once said that if
you took all the after-dinner speakers and laid them head-to-toe at the equator, .....
that would be a very good thing. In fact, some years ago, my friend Anatole Abragam
warned me — Alex, when they start asking you Lo give after-dinner speeches, it might
be an indication that you are no longer on the way up. So when 1 was asked to talk
about Aharoncv tonight, the first two words that came to my mind were - oy vey.

But, ladies and gentlemen, this is no ordinary occasion - Yakir Aharonov is not
only a truly great scientist and one of the most brilliant and stimulating people
I have ever known, he is an extraordinary colleague and dear friend, and it is a
privilege and a pleasure for me to say a few words about him. You might well ask,
why me, a chemist, talking about a physi-
cist. Well, Aharonov himself once paid me
what he considers the greatest compliment
you guys can give a chemist - Come on,
Alex, you're not reaily a chemist, you're
too smart, ... you're a physicist. Yakir,
it’s your birthday, let me return the com-
pliment - you don’t look seventy.

Yakir Aharonov was born in 1932, in Haifa,
Israel, to Russian parents. He grew up, so
to speak, in Kiryat Haim, where, already




at age five, it was abundantly clear that
he was a mathematical prodigy. The res-
idents of Kiryat Haim soon became ac-
customed to the apparition of the boy
Aharonov accosting and threatening them
in the streets, challenging them to give him
a problem - a novel concept of mathemat-
ical mugging, your problem or your life.

Because his parents were unwilling to teach
him chess (a waste of Lime), Aharonov
traded some strawberries from his yard to
a neighbor, an older child, who taught him
the game. When not playing with his
friend, Aharonov would play by himseclf,
one hand against the other, one playing
white and the other black. It is not known
which hand was stronger, his left hand or
his other left hand. As many of you know,
Aharonov had a natural aptitude for the
game and became o very strong player, to-
day an Israeli candidate master. During
his period as Miller Professor at Berkeley,
Aharonov made an unforgettable impres-
sion not only on the scientists, but also
on the nationally renowned Berkeley chess
community. As a young man, Aharonov
had a gift not only for math and chess; he
was good at all sorts of games and puz-
zles. He discovered, to his joy, that his
prowess at backgammon made him almost
irresistible to middle-castern women.

The last time I played blitz chess against
Aharonov, he again asked if I wanted &
handicap. [ reclated to him the (perhaps
apocryphal) story told to me recently by
John Rowlinson about Max Euwe, the




former world chess champion. Fuwe was
on & train analyzing & game cn his pocket
chess set. A fellow traveler in the compart-
mett asked him if he played chess, to which
Euwe replied that yes, he did. Would you
like to play a game, asked the other fel-
low; sure, said Euwe, who proceeded to
set up the pieces and then removed cne
of his rooks. What are you doing, asked
his partner. 1'm giving you a rock, replied
Euwe. You're giving me a rook? You've
never played against me, you don't know
who 1 am, how can you give me a roo.? If
1 couldn't give you a rook, said Euwe, I'd
know who you are.

Well, Aharonov doesn’t give me a rook, but he does give me a differential time
handicap in order to imbue the game with some semblance of balance. in other words,
he heats the heil out of me. It is because of Aharonov that 1 have now resorted to
playing for money against small children. But Aharonov too is fallible - about twenty
five years ago, in New York, he played, and lost, three games against Bobby Fischer,
Aharonov maintaing that this is pretty good; he lost only three games, so he did
better than the famous Russian, Taimanov, and the great Dcne, Larsen, who cach
lost six games against Fischer.

At age eleven, Aharonov took up the violin, an instrument that he cherishes to this
very day. He soon discovered that the best acoustics for his instrument were in the
kitchen and bathroom. it was later, after he read how Einstein ha independently
made the same discovery, that Aharonov decided he would become a physicist.

After graduacdon from high school,
Aharonov was inducted into the army,
into the artillery division. Yes, the ar-
tillery division. He soon lost interest
in experimental artillery after he proved
that quantum corrections to the bal-
listic trajectories were insignificant and,
much to the relief of the command-
ing auihorities, hc volunteered for an
army research unit. The only legacy of




Aharonov’s army experience was his occa-
sional, misguided tendency to force himself
upon his friends as a bodyguard.

After his discharge from the army,
Aharonov studied at the Technion, the Is-
rael Institute of Technology, where he met
the late David Bohm. Here Aharonov is
shown at the Technion with a co-student
whom he identifies as Tsachi Gozani.
Gozani allegedly spent much of his time
begging Aharonov to stay away from the
epparatus.  After discussions with fac-
ulty members who feared for their lives,
Aharonov seriously contemplated becom-
ing a theorctician. He moved with Bohm
to Bristol to do his Ph.D. and it was
there that the famous Aharonov-Bohm ef-
fect was conceived, elucidated and pub-
lished.

One of the external examiners
for Aharonov’s Ph.D. was Rudolph Pcierls,
who claimed he did not believe some argu-
ment that Aharonov had formulated about
energy-time uncertainty, but Peierls could
not find an error. He invited Aharonov to
Birmingham, where they sat and argued
for days, after which Peierls was convineed
and said that he now believed. But Yakir
tells me that just two years ago, Peicrls was
in Israel for the Landau Symposium - he
ran into Aharonov and said hey, aren’t you
Aharonov? Yes, I am. Well, said Peierls,
now I don't believe you again.
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Tt was during his time in England that
Aharonov became concerned about his Is-
raeli accent, because he felt that it was
h'. \ering his chances with women. He
arranged for injensive tutoring sessions in
elocution, seeking to acquire not just any
old accent, but an Oxford accent, and de-
voting considerable time and effort to the
enterprise. On the day of the first ex-
periment with his nc - accent, an excited
Aharonov ventured into the streets of Bris-
tol and asked for directions to go some-
where; | imagine that we can all sympa-
thize with his frustration when the answer
came back in Hebrew.

Following his Ph.D., Aharonov spent sev-
eral years at Brandeis and Yeshiva Univer-
sitics in the United States. In 1962, he
created a sensation when he talked about
the Aharonov-Bohm effect at the Cincin-
nati Conference on quantum theory (the
other participants included Dirac, Furry,
Podolsky, Rosen and Wigner). The con-
ference made headlines despite the many
other exciting events in Cincinnati at the
time.

In 1966, Aharonov joined the faculty at
South Carolina and, in 1967, he became
Full Professor at Tel-Aviv University. He
was subsequently honored with chairs in
physics both at Tel-Aviv and here in South
Carolina, where, | understand, he is again
contemplating changing his accent. His
colleagues here know that, for Aharonov,
physics is not just a job - it is a passion,
lite chess. ™hat Tel Aviv University and
the University of South Carolina pay him
to indulge in his passion rcmains for him
unfathomable. Yakir, may it become yet
more unfathomable.




Over the years, Aharonov has further cultivated, carefully and successfully, his image
as a shlemiel, thereby shiclding him from anroying appeals to help around the lab,
the department or the house, and leaving him time to do what he loves and does
best - to think. And, as many of us know, Aharonov thinks best in an atmosphere
composed of ten percent oxygen, forty percent nitrogen and fifty percent cigar smoke.
What kind of cigar smoke? Well, let’s just say that many years ago, 1 gave him one
of my prized Montecristos from Havana, and he was able to exchange it for a year's
supply of his beloved White Owls. Aharonov continues with his tradition of visiting
Berkeley whenever he runs out of cigars, much to the delight of my children, by whom
he is much admired.

Yakir Aharonov is a giant of modern physics. From his Ph.D. with Bohm te his
work on geometric phases, he has made monumental contributions to quantum the-
ory, and he has profoundly advanced our understanding of electromagnetism and
other gauge theories of fundamental interactions. On two occusions, John Maddox,
the editor of Nature (the science magazine), suggested, justifiably, many of us be-
lieved, that Aharonov, Bohm and Berry should get the Nobel Prize for physics. In
his first editorial on the subject, in 1989, Maddox writes about Abrahamov and the
Abrahamov-Bohm effect; in his second editorial on the subject, this year, he mukes
& slightly better approximation, writing about Aharanov and the Aharanov-Bohm
effect. And listen to the perverse, yet quaint 1989 description of the eflect - Abra-
hamov and Bohm, independently of M. J. Berry, have shown that the supposedly
insignificant complex phase of Maxwell’s electromagnetic potential is measurable.

Weli, Yakir Aharonov is no stranger to
honor and to ceremony. He is a member
of the Israel and U.S. National Academies
of Sciences, and amongst his many awards
arc the prestigious Israel Prize in exact
scicnces and the Elliot Cresson Medal
of the Frankiin Institute in Philadelphia.
But Aharonov is particularly proud of the
knighthood bestowed upon him by his
friends on the occasion of his fiftieth birth-
day which, he calculates, was ten years ago.
1 guess the citation reads — why is this
knight different from all other knights?




A

Ladies and gentlemen, 1 was asked Lo make
my remarks either witty or brief - so 1 must
come to a close.

Yakir Aharcnov is a man with a legendary
hunger for science and for life. But be-
yond his genius and his accomplishments,
Aharonov has that rarest of human qual-
ities — he is a mensch. Dear Yakir, | am
sure that 1 speak on behalf of everyone
here when I say that you have earned our
respect. On the occasion of your sixti-
eth birthday, permit me to offer a toast to
you and your family - the Aharonovs, the
Abrahamovs and the Aharanovs - Yakir
and Nilli,......... to another sixty years.
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SECTION 2

AHARONQOV-BOHM EFFECT AND
GEOMETRIC PHASES




DYNAMIC OBSERVATION OF FLUX LINES
BASED ON THE AB EFFECT PRINCIPLE

A. TONOMURA
Advanced Research Laboratory, Hitachi, Ltd.
&
Tonomura Electron Wavefront Project, ERATO, JRDC
Hatoyama, Saitama 350-03, Japan

ABSTRACT

Flux lines penetrating superconducting films are directly observed with a "co-
herent” field-emission electron heam. These flux lines are detected as phase
shifts of an electron beam passing through the films due to the Aharonov-Bohm
cffect.

1. INTRODUCTION

The behavior of flux lines plays o decisive role in the fundamentals
and practical applications of superconductivity.

Although much effort has been expended on developing methods to
directly observe flux lines, until recently flux lines have evaded direct
observation becatse they are shaped like an extremely thin thread and
have a small flux value of h/2e(= 2 x 1075 Wb). In 1967, Essman and
Trauble!) used the Bitter technique to directly observe the flux-line

lattice predicted by Abrikosov.?) In this technique, fine ferromagnetic
particles are sprinkled over the superconductor surface and the loca-
tion of flux lines is observed as a replica with an electron microscope.
This technique has recently been used to elucidate the microscopic
characteristics of high-Tc superconductors.?) However, this technique
is essentially static, and it cannot determine the dynamic behavior
of flux lines. New techniques for observing flux-lines have also been
developed.*® For example, Hess, et al.*) used a scanning tunneling mi-
croscope to observe the flux-line lattice of NbSey;. H¢ wever, dynamic
observation is still not feasible with these techniques.

13
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The possibility of direct observation using a transmission electron
microscope has been theoretically investigated making use of the fact
that an electron beam is deflected®®, or phase-shifted by flux lines:
Despite trials, the deflection angle is too small—~less than 1 x 107"
rad——to observe flux lines as a Lorentz micrograph (a greatly defo-
cused electron micrograph). Or, in other words, the phase shift of the

electron beam is produced due to the Aharonov-Bohm effect?) when
tire beam passes through a flux line, which is, in this case, less than .
This phase shift was actually detected by electron interferometry.'%!)
Using this method, Boersch, et al.'?) observed the location of a single
flux line leaking from a superconducting tube as a shift of parallel
interfercnce fringes by half their spacing, followed by thermally acti-
vated jumps of flux lines from one pinning center to another with o
time resolution of around one second.

However, as a result of the development of a "coherent” field-
emission electron beam,'®'*) it has become possible to measurc the
phase distribution of an electron beam to a precision of 1/100 of the
wavelength'™ through electron holography. '8~ In addition, the two-
besu interference pattern has become directly observable on the flu-
orescent screen, permitting dynamic observation.

Such technical development has helped to open the way to direct
observation of flux lines. In this method, a single Qux line leaking from
a superconductor surface could he observed directly and even dynam-
ically as a contour fringe in an interference micrograph. Furthermore,
for the first time, flux lines were also observed in the transmission
mode.

ki

2. EXPERIMENTAL APPARATUS

Fixperiments were carried out using holography electron micro-
scopes. The holography electron microscopes used in the present ex-
periments are transmission electron microscopes equipped with field-
emission electron guns'®!4) for coherent specimen illuminatior, and
electron biprisms!®) for hologram formation.

A cut-away drawing of our 350-kV holography electron microscope®”)
is shown in Fig. 1. The main column below the objective lens is
almost the same as that of a Hitachi H-9000 transmission electron
microscope. The illumination system consists of a cold field-emission
clectron gun and double condenser lenses.

The specimen is illuminated by a collimated electron beam. The
small illumination angle 283, which is indispensable for forming elec-

tron holograms, or Lorentz micrographs, can be reduced to 5 x 1078
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rad by the double condenser lenses. A low-temperature specimen
stage is substituted when flux lines re observed. The temperaturce
of the specimen holder can be reduced to 4.5K. At the same time, a
magnetic field of up to 150 Gauss can be applied in the horizontal
direction.

Iilectron biprisms'®) are installed at two positions, one below the
objective lens and the other below the intermediate lens. The ap-
propriate biprism position can be selected after the optical conditions
such as magnification have been determined.

The specimen or hologram iinage can be enlarged by magnifying
lenses as in the electron microscupe, which is usually recorded on filin.
However, for dynamic observation, it is recorded or videotape through
a television system attached to the microscope.

3. EXPERIMENTAL METHOD

Two methods were employed in the present experiments, i.c., clec-
Lron holography and Lorentz microscopy. Magnetic lines of force leak-
ing from the superconductor surface were directly observed as contonr
fringes in an electron interference micrograph obtained through the
clectron holography process. In the Lorentz micrograph with an ap-
propriate defocusing, flux lines in the supercouductor were observed
as globules with black and white contrast pairs.

3.1 Eleetron Holography

Flectron holography 19 is a two-step imaging method using clee-
tron waves and light waves (see Fig. 2). An electron wave illuminates
an object and is scattered. A rveference wave that has been tilted by
a prism is then projected onto the scatiered wave to form an interfer-
ence pattern that is recorded on film. This film, called a hologram, is
subsequently illuminated by a collimated laser beam. The exact im-
age is then three-dimensionally reproduced. An additional conjugaice
image is also produced in holography.

Once clectron wavefronts have been reproduced as light wavefronts,
versatile optical techniques can be used to supplement clectron optics.

An interference micrograph, or contour map of the wavefront, can
be obtained by simply overlapping an optical plane wave with this
reconstructed wave (see Fig. 3(a)). If a conjugate wavefront instead
of a plane wave overlaps this wavefront, the phase difference becomes
twice as large, and is as if the phase distribution were amplified two
times, as shown in Fig. 3(b). By repeating this technique, a phase
shift can be detected even as small as 1/100 of a waveleagth.
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This phase-amplified interference electron microscopy provides infor-
mation about microscopic distribution of the electric?!) and magnetic
22) fields.

Flux lines can be directly observed in a twice phase-amplified in-
terference micrograph. The observation principle is illustrated in Fig.
4. When an electron beam is incident to a uniform magnetic field, the
beam is deflected to the left by the Lorentz force, which acts perpen-
dicularly to the direction of the magnetic field. Viewing electrons as
waves, the introduction of a " wavefront” perpendicular to the electron
trajectory will suffice. The incident electron heam is a plane wave,
but the outgoing beam becomes a plane wave with the left side tilted
up. In other words, the wavefront is viewed as rotating around a ro-
tating axis; the magnetic line of force. From a contour map of this
wavefront, it can be seen that the contour lines follow the magnetic
lines of force. This is because the height of the magnetic lin.: of force
is the same along it. Thus, a very simple conclusion can be reached:
when a magnetic field is observed in an interference electron micro-
graph, the contour fringes can be considered to represent magnetic
lines of force.

I[ Electrons

v

Fig.4. Principle behind magnetic flux observation.
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The interference fringes are also quantitative. A simple calculation
convinces us that a certain minute amount of magnetic flux, h/e, is
flowing between adjacent contour fringes. This is, in a sense, quite
natural. A superconductive flux meter, SQUID, can measure the flux
in units of h/2e by using Cooper pair interference. An electron inter-
ference micrograph is formed by the interference of electrons rather
than Cooper pairs. Therefore, the flux unit is h/e, since the electric
charge is e rather than 2e. However, the principle is the same.

It can be concluded then that a contour fringe in a twice phase-
amplified interference micrograph indicates a single flux line,

3.1.1 Lorentz microscopy

A Lorentz micrograph is a greatly defocused electron micrograph.
The principle behind it is shown in Fig. 5. When an electron beam
is incident to a ferromagnetic thin film, which has two magnetic do-
mains, the beam is deflected by the magnetization, and the deflection
directions are different for th~ two domains. Therefore, when the elec

Electron

Magnetic
film

Wavefront

Observation
plane

Fig.5. Lorentz microscopy.
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tron intensity distribution is observed in the lower plane, the domain
wall can be observed as a line of the weak intensity. Thus, Lorentz
microscopy is effective when the magnetic field changes suddenly, such
as at a domain boundary in a ferromagnetic film. However, it 1s not
easy to observe flux lines in free space by Lorentz microscopy, since
magnetic fields there are distributed smoothly in a harmonic form.

4. EXPERIMENTAL RESULTS

Individual flux lines were statically and drnamically observed using
holography electron microscopes.

4.1 Observation in the Profile Mode

Flux lines leaking out from a superconductor surface can be directly
observed as contour fring s in a twice phase-amplified interference
micrograph through electr a holography, as explained in the previous
section.

The experimental arrangement is shown in Fig. 6. A thin tungsten
wire 40um in diameter was used as the substrate for a superconduct-
ing specimen, Lead was evaporated onto one side of the wire. A
magnetic field of a few Gauss or less was applied to the evaporated
lead film. The specimen was cooled to 4.5K. In a weak magnetic
field, the magnetic lines are excluded from the superconductor by the
Meissner effect,

Electron Wave

1]

Magnetic
{ field
S

Superconductor

Fig.6. Experimental arrangement to observe flux lines
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but if the magnetic field is strong, the magnetic lines of force penetrate
the superconductor in the form of flux lines. By applying an electron
beam to the specimen from above, the magnetic lines of force of flux
lines were observed through the process of electron holography.

Figure 7(a) shows the single flux line observed when the supercon-
ducting film was 0.2um thick. In this figure, the phase difference is
amplified by a factor of two. Therefore, one interference fringe cor-
responds to one flux line. A single flux line is captured in the right
part of this photograph. The magnetic line of force is produced from
an extremely small area of the lead surface, and then spreads out into
free space.

In addition to observing isolated flux lines, another surprising re-
sult was found. A pair of flux lines were observed that were oriented
in opposite directions and connected by magnetic lines of force (Fig.
7 (a) left). The following explanation may be considered. When the
specimen is cooled below the critical temperature, the lead becomes
superconductive. During the cooling, however, the specimen experi-
ences a state where the flux-line pair appears and disappears repeat-
edly due to thermal excitation *¥ and is pinned by some imperfection
in the superconductor, eventually resulting in the flux being frozen.

What happens when the thickness of the superconducting thin film
is increased? Figure T(b) shows the state of the magnetic lines of force
when the thickness is lum. It can be seen that the state changes
completely. Magnetic flux penetrates the superconductor not as in-

“Ph

Fig.7. Interference micrograph of flux lines leaking from Pb film
(Phase ampiification: x2).

(a)Thickness = 0.2um. (b)Thickness = 1um.
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dividual flux lines but in a bundle. The figure does not show any
flux-line pairs.

Our explanation for this phenomenon is as follows. Becauce lead is
a type-1 superconductor, the strong magnetic field applied to it par-
tially destroys the superconductive state in some parts of the speci-
men (intermediate state). Figure 7(b) is a photograph showing that
the maguetic lines of force penetrate the parts of the specimen where
superconductivity has been destroyed. However, since the other sur-
rounding parts are still superconductive, the total amount of pen-
etrating magnetic flux is an integral multiple of the flux quantum,
h/2e. Thin superconducting films (Fig. 7(a)) were an exception. In
that case, however, lead behaved like a type-Il superconductor and
the flux penetrated the superconductor in the form of individual flux
lines.

Since the flux itself can be observed using electron holography,

its dynamic behavior can be observed.?*) In this case, after electron
holograms were dynamically recorded on videotape, a twice phase-
amplified contour map of each frame was numerically reconstructed,
and again recorded on videotape. Although off line, flux dynamics
could be observed with a time resolution of 1/30 of a second.

The experiment was carried out as follows. Trapped fluxes in a Pb
thin filr. remained stationary at 5K. However, when the sample tem-
perature was raised, the flux line diameter gradually increased. Just
below the critical temperature, the flux lines began to move. Figure
8 shows a section from the videotape that recorded this movement.

Three flux lines in the upward direction are trapped in the super-
conductor and their magnetic lines of force can be seen in Fig. 8(a).
At 0.13 seconds, the flux lines moved suddenly to the left zfter only
the lapse of a single frame. Two upward flux lines ¢nd two downward

N AV

(a) (b) @

Fig.8. Dynamical observation of trapped flux line near Tc.

(a) 0 seconds. (b)0.13 seconds later. (c) 1.33 seconds later.
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flux lines are connected by magnetic lines. At 1.33 seconds, downward
flux lines moved to the right and only a broad single magnetic line
remained.

Although this flux movement due to thermal activation is random,
a similar experiment is now in progress where a current is applied to
the superconductor. In this case, flux lines receive a Lorentz force
determined by the current, but with opposite directions for upward
and downward flux lines. The pinning force at cach pinning site can
thus be measured.

4.2 Observation in the Transmission Mode

Flux lines heve recently been observed in the transmission mode.?%)
A two-dimensional distribution of flux lines was seen dynamically by
Lorentz microscopy with a 300-kV holography electron microscope.

The experimental arrangement is shown in Fig. 9. A Nb thin film
was prepared by chemically etching a roll film. The film, set on a
low-temperature stage, was tilted at 45° to the incident beam with
300 keV electrons falling vertically, so that the electrons could receive
the flux-line magnetic fields penetrating the sample perpendicularly
to its surface. An external magnetic field of up to 150 Gauss was
applied horizcntally.

The information about the flux lines is contained in the phase dis-
tribution, or in other words, the wavefront distortion of the trans-
mitted electron beam. This information cannot be read from a con-
ventional electron micrograph where only the intensity is recorded.
However, the distortion reveals itself in a defocused image, i.e.. a
Lorentz micrograph, in which a flux line can be seen as a tiny spot;
one half bright and the other half dark.

The sample was first cooled down to 4.5K and the applied mag-
netic field /7 was gradually increased. As B was increased, flux lines
suddenly began to penetrate the film at B = 32 Gauss, and their num-
ber increased with B. Their dynamic behavior was quite intercsting:
at first, only a few flux lines appeared here and there in the field of
view, 15 x 10um?, oscillating around their own pinning centers and
occasionally hopping from one center to another. These movements
continued as long as the flux lines were not closely packed (B < 100
Gauss).

An example of the equilibrium Lorentz micrographs at B = 100
Gauss is shown in Fig. 10. The film has a fairly uniform thickness in
the region shown, but is bent along the black curves, called bend con-
tours, which are due to Bragg reflections at the atomic plane brought
fo a favorable angle by bending. Each spot with a black and white
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contrast is the image of a single flux line. This cortrast reversed, as
expected, when the applied magnetic field was reversed. The tilt di-
rection of the sample can be read from the line dividing the black and
white part of the spots. Since the black part is on the same side for
all the spots, the polarities of all the dux lines as seen in the region
ale the same.

Flectron source
~

£,

Lorentz
micrograph

Fig.9. Schematic for flux-line lastice observation.
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Fig.10. A Lorentz micrograph of a two-dimensional array of flux
lines in superconducting Nb film.

At low B, i.e., up to 30 - 50 Gauss, the flux lines are too scarce
to form a lattice, even in equilibrium. At B = 100 Gauss where the
flux-line density is so high that it cannot be anything but a hexagonal
lattice, the flux-line configuration and movement arc influenced by
structure defects.

5. CONCLUSION

[llectron holography has opened up a new window fur direct and
real-time observation of the microscopic dynamics of individual super-
conducting flux lines such as in flux creep, pinning, etc, which up to
now has only been observed in macroscopic experiments. 'This tech-
nique will effectively be employed for elucidating fundamentals and

practical apphications of superconductivity, especially in the field of

high-Tc superconduclors,



L e I e

26

6. REFERENCES ’

1) V. Essman and H. Triuble: Phys. Lett. A24 (1967) 526.

2) A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32 (1957) 1442 [Sov. Phys.
JETP 5 (1957) 1174].

3) For example, D. J. Bishop, et al.: Science 256 (10 January 1992)
165.

4) H. F. Hess, et al.: Phys. Rev. Lett. 62 (1989) 214.

5) J. Mannhart, et al.: Phys. Rev. B35 (1987) 5267.

H. Yoshioka: J. Phys. Soc. Jpn. 21 (1966) 948.

;C Colliex: Acta Crystallogr. Sect. A24 (1968) 692.

) C. Capiluppi, G. Pozzi, and V. Valdre: Phil. Mag. 26 (1972)865.

) Y. Aharonov and D. Bohm: Phys. Rev. 115 (1959) 485.

0) H. Wahl: Optik 28 (1968) 417.

1) B. Lischke: Phys. Rev. Leit. 22 (1969) 1366.

12) H. Boersch, et al.: Phys. Status Solidi (b) 81 (1974) 215.

3) A. V. Crewe, et al.: Rev. Scient. Instrum. 39 (1968) 576.

4 A. Tonomura, et al.: J. Flectron Microsc. 28 (1979) 1.

A. Tonomura, et al.: Phys. Rev. Lett. 54 (1985) 60.

D. Gabor: Proc. R. Soc. London, Ser. A197 (1949) 454.

A. Tonomura: Physics Today 22 (April 1990) 22.

A. Tonomura: Adv. Phys. 41 (1992) 59.

G. Mollenstedt and H. Diiker: Z. Physik 145 (1954) 377.

T. Kawasaki, et al.: Jpn. J. Appl. Phys. 29 (1990) 1L.508.
) S. Frabboni, G. Matteucci & G. Pozzi, Phys. Rev. Lett. 55 (1985)
2196.

22) A. Tonomura, et al., Phys. Rev. Lett. 44 (1980) 1430.

23) J. M. Kosterlitz and D. Thouless, J. Phys. C€ (1973) 1181.

24) T. Matsuda, et al., Phys. Rev. Lett. 66 (1991) 457.

25) K. Ilarada, et al.: Nature 360 (5 Novembher 1992) 51.

DO DS e
—C O o0 =] C':
\vavvvvvvvv



SIGNS AND MIRACLES OF THE AHARCNOV-BOHM EFFECT

Alfred S. Goldhaber
Institute for Theoretical Physics
State University of New York
Stony Brook, NY 11794-3840

ABSTRACY

Familiar aspects of electromagnetic influences on the quantum propagation
of charged particles — and some not so familiar ~ conspire to support a view of the
Aharonov-Bohm effect as the essential and primary manifestation of gauge inter-
actions. In particular, the perturbative renormalization group scaling for this form
of the coupling lends appeal to the notion that, on scales where the conventional
coupling o becomes strong, there should be a ‘universal pasta solution’ for the vac-
uum structure of any gauge theory: The Nielsen-Olesen proponsal of flux spaghetti
should apply not only for QCD at long distances as they argued, but just as well
for QED at short distances.

Signs of the AB effects

1 hope to weave into a single tapestry a number of threads which together
illustrate the beauty as well us the power of the Aharonov-Bohm effect! as an orga-
nizing principle for gauge theories. Some of these notions are explicit, some perhaps
implicit in the existing literature. Much of the analysis is contained in a recent paper
with Hsiang-Nan Li at Academia Sinica in Taiwan and Rajesh Parwani at Saclay,?
and I am most grateful to them for a stimulating, still progressing collaboration. Let
me begin by addressing a deceptively simple question, “What is the sign of the AB
effect? 1 failed to grasp the point properly in my spoken presentation, but Jeeva
Anandan and Raymond Chiao helped me afterwards to see that the AB effect really is
two complementary effects: There is the shift of interference fringes which Aharonov
and Bohm pointed out in their original work,’ and then there is the shift in angular
momentumn eigenvalue for a particle in a ring encircling some magnetic flux,

Let us start by determining the sign of the second effect, the shift in angu-
lar momenturn eigenvalue. This may be done by clagsical physics using Ehrenfest’s
theorem, which states that the change in expectation value of some observable is de-
termined by the classical equation of motion for that observable, with the appropriate
expectation value used to compute the classical force. Imagine that the magnetic flux
is turned on adiabatically, sa that the particle remains in a definite eigenstate through-
out. By Faraday’s law, if the flux is generaied by & current of particles with the same
sign of charge as the test particle, then the angular momentum of the test particle
must decrease as the angular motnentuin of the current particles increases. Thus, for
positive charge-flux product ¢®, with the flux coming out of the plane of motion as
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viewed from abowv, the shift in angular momentum is
OM = —qb/hec = -1, Y]

where F' is the flux expressed in units of an AB quantum, he/q. In terms of signs,
this means that the sign of the coherent-ring AB effect is negative,

Next we need to study the classic fringe-shift effect. To put the question
in terms of observables, let us ask: On which side of a flux, the right or the left,
should one introduce an attractive, velocity-increasing electrostatic potential in order
to compensate the AB phase? To answer this question by classical physics, consider
a charged particle traveling through a region of uniform magnetic field oriented up
with respect to the plane of motion. How could we arrange that the particle travels
in a straight line instead of being deflected to the right? We could compensate for
the Lorentz force by introducing an electric field in the plane, which by itself would
push the particle to the left. This menns that the electrostatic potential decreases
from right to left, and thus is more negative on the left than on the right.

Since & uniform magnetic ficld may be described as a collection of adjacent
regions of magnetic flux, it follows that to compensate for the AB phase one must
place a suitable negative potential on the left side of the flux. We can see this directly:?
The pure uniform magnetic ficld gives a deflection to the right. This is the same effect
which would result if the phase velocity were increased on the right, since that means
the number of wavelengths per unit distance increases, or the wavelength shortens,
which by standard refraction ideas gives deflection to the right. To compensate then
requires adding attraction on the left. Evidently this means that another observable,
the direction of shift in the interference pattern, also must be to the right, so that the
wave fringe motion of the AB effect is in the same direction as the classical deflection
by a uniform field. The conclusion is that with standard conventions the sipm of the
clussic AB effect is positive.

To sec¢ why these two opposite signs not only are compatible *.ui are intrinsi-
cally connected, let us go to a special gauge, in which outside the region of magnetic
field the vector potential vanishes almost everywhere, but between the azimuthal an-
gles ¢ = 21 — ¢ and ¢ = 0+ ¢ there i3 a sharp jump in the phase of the wave function.
Since the angular momentum is reduced by the flux, it follows that in this gauge the
phase must have s decreasing contribution proportional to the flux as ¢ increages
from 0 to 27. Hence, the phase jump as ¢ increases through 27 must be positive, to
restore the original value. What does this mean for interference shifts? If we imagine
the right and left parts of the diffracted wave arriving at a distant screen at an angle
¢ > 0, then the part of the wave which goes round on the right passes through the
matching angle and experiences a positive phase jump. On the other hand, if we
look on the screen at an angle ¢ < 27 then the wave which goes round on the left
experiences a negative phase jump. In either case, the effect of the flux is to produce
a positive relative phase shift of the right with respect to the left part, reproducing
the previous conclusion.
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Scattering on a thin flux string

Having learned the basic signs of the AB effect, we should look for miracles
beyond the miracle of the effect itself. The first such miracle is found already in
the original work.! Aharonov and Bohm observed that for a spinless charged particle
interacting with an infinitely thin string of noninteger flux the AB effect is self-
enforcing. In every partial wave, even the lowest, there is a centrifugal barrier which
assures that the wave function vanishes as a positive power of a/), where a is the
radius of the flux string, and A is the De Broglie wavelength of the particle. Thus
a low-energy particle effectively is excluded from the region of magnetic field, and
this constitutes the necessary requirement that the sole obser able consequence of
the field i the AB effect.

I cannot resist an aside about the special case of nonzero integer F'. For any
integer F', there exists a partial wave which outside the flux has vanishing kinetic
angular momentumn, and which approaches a constant at small radius. For nonzero F
this channel has a repulsive phase shift of order 1/In{)/a), implying that a/) must be
exponentially small if the phase shift is to be negligible. Thus at finite a there can bea
significant correction to the limiting form valid for o = 0, and that correction violates!
periodicity because it distinguishes between F = 0 and all other integer values. This’
is not the last time that logarithmic effects will emerge in our consideration of flux
strings.

The miracle of the thin string limit does not end with self-enforcement of
the AB effect. If the ratio a/X may be neglected ther it is possible to compute the
scattering amplitude analytically, and the result is remarkably simple. The amplitude
is

[ = sin(m F)e~/? /(2nik) 2 sin(¢/2) , (2)

where k is the wave number of the charged particle.™ 1 believe that for a suitable
choice of gauge convention the above expression can be used in the F' interval |0, 1],
with periodicity used to define the expression outside that interval, at the cost of a
discontinuous derivative df /dF at integer values. The resulting cross section in any
case is periodic in F' with period 1, as ull observables must be under these conditions.

Enter helicity

The situation changes in a signiticant way when the charged particle is an elec-
tron with the Dirac gyromagnetic ratio 2. Now the attractive interaction between tlic
flux and the electron for parallel orientation of its magnetic moment allows penetra-
tion into the flux, and hence a sensitivity to more than the AB phase or the fractional
part of F. What may be surprising is that in the long wavelength limit the sensitivity
to F is only slightly enhanced: 'The observables depend not only on the fractional
part F'~[F}, but also on the sign £/ F{.% Thus, a new sign has entered the discussion,
the sign of the magnetic flux. If electrons are confined to a cylinder centered on the
flux, then energy levels in the partial wave with smallest kinetic angular momentum
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are lower for magnetic moment parallel to the flux than antiparallel, 1t is hard to
decide which is more remarkable - the breakdown of periodicity in the dependence of
observables on the flux, or the extremely simple form of that breakdown, leading to
periodicity for nonnegative F', and separately for nonpositive F, but not, for integer
shifts which cross F' = 0.

The effect on the scattering amplitude f of the magnetic moment coupling
may be understood from a symmetry so powerful that it is fairly called miraculous,
the conservation of helicity for an ideal Dirac electron in the presence of a pure
magnetostatic field. The minimum modification required to bring the amplitude for
scattering of spinless particles to a suitable form is the inclusion of a factor which
rotates the spin in such a way that helicity eigenstates with respect to the initial beam
direction are converted to cigenstates with respect to the scattered beam direction.®
This factor is a spin rotation matrix £/3%/2, which however is not single-valued in ¢.
Since we are working in a gauge where the vector potential is nonsingular, the weve
function and hence the scattering amplitude must be single-valued, and therefore
we need to include a further factor ¢¥#/2, The choice of sign for the exponent in
this factor is directly related to observable quantities, the (opposite) signs of the
phase shifts in the two partial waves with magnitude of kinetic angular momentum
Jy = Lg + s3 smaller than 1/2. It turns out that the phase shift for Dirac mognetic
moment parallel to the flux F' is attractive, while for antiparallel it is repulsive. The
scattering amplitude indeed is sensitive to the sign of the flux, and there are observable
consequernices, such as the Zeeman splittings mentioned above, and the propertic: of
specially designed junctions.”?

The case of nonzero integer F is altered a bit from the situation described
earlier for spinless charged particles. The wave with orbital kinetic angular momen-
tum zero and Dirac moment antiparallel to F' again experiences a repulsive phase
shift vanishing us 1/In{A/a), but there is no appreciable phase shift for the wave with
Dirac moment parallel.

All the results of helicity conservation follow from the assumption that the
electron experiences only magnetic forces. In many laboratory examples, this is not a
good assumption, since the materials in conducting coils, and shields for those coils,
exert powerful nonmagnetic forces on any incident particle. This difficulty may be
overcone by making use of a purely magnetic ficld, as in the region just at the end
of a tube containing a superconductor quantum of flux, £ = he/2e,” Another way o
make the effective ficld purely magnetic is to deal only with propugation of cleetron
quasiparticles through a superconductive medinm, in which case the interaction is
purely magnetic (and even loeally a pure gauge effect) unless the quasiparticle actually
penetrates a vortex of magnetic flux. In the interior i the vortex there might be an
effective scalar potential influencing the motion. However, as long as the resulting
forces are weak on the scale determined by the vortex radius they have ucgligible
influence on long-wavelength scatlering, so that helicity conservation continues to bhe
a goad approximation in this regime, even though no longer exact.

Such is the situation expected {or cosmic strings. The ordinary vacuum plays
the role of a superconducting mediwn, and for light fermiuns with effective mass com-
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ing from a Higgs coupling the change of effective inass in the interior of the string has
negligible influence on the scattering. Thus, for cosinic strings one expects the helicity
conserving boundary conditions, only changing the si«n of one phase shift from that
for pure AB scaftering, to be the uniquely selected du :cription for the effect on light,
low-energy fermions of such strings.

Induction of vacuum currents

A further dynamical consequence of sensitivity to the sign of F' may be seen if
we examine (for spinor QED) vacuum electric currents induced by F. These currents
always work to generate a magnetic field opposed to F, but otherwise periodic for
nonnegative or nonpositive F.891%¢ In the cuse of scalar clectrodynamics, the induced
currents work to bring the flux to the nearest integer value, and so are insensitive
to the sign and comnletely periodic in F/.''%2 A case for which one may guess the
behavior, though it is not yet computed to my knowledge, is that of vector electro-
dynamics. Here perturbation theory, as well as studies of behavior of the vacuum in
the presence of a uniform magnetic field, lead to the expectation that the induced
currents will enhance rather than oppose the applied flux,'#!3' in other words, that
conventional screening will be replaced by antiscreening. In all cases, one expects the
induced flux to vanish when F is exactly an integer, since then the effective bound-
ary conditions on any charged-particle wave function at the location of the infinitely
thin flux are exactly the same as if no Hux were present.!® The antiscreening may be
understood qualitatively because the attractive magnetic moment interaction reduces
the effective mass of a spinor or vector particle. For spinors, the vacuum is described
wy o filled negative-energy sea, so that a reduction in effective mass actually raises the
vacuum energy, while for vectors the reduction in single-particle energies implies also
a reduction in the energies associated with the zero-point motion of the oscillutor for
each single-particle state ,1314? and hence o reduction in vacuum energy.

In the region close enough to the flux string that the radius r is negligible
compared to the Compton wavelength of the charged particle one may neglect the
particle mass, and then use dimensional analysis to see that the azimuthal current
density must be proportional to 72, This implies a magnetic field proportional to r-2,
contributing a magnetic flux between shells of rudii 7 and ' proportiona to In(!/r).
Thus, ay a test charge approaches the string, the spparent flux instead of remaining
constant exhibits an anomalous dimension, fmnilior from the renormalization group
treatment of clectric couplings., However, still within the perturbative context, there
is a big difference. The relevant beta function (to all orders in F', but lowest order in
the gauge coupling a) vanishes for integer F'. Since the AB coupling does not diverge,
even though it does get strong enough to make perturbation theory suspect, it may
be a more reliable indicator of the behavior in the large o regime than is the naively

divergent o itself,
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Dynamical strings of flux?

We may say with considerable assurance that in the strong coupling (large
a) domain there will be large (order unity) fluxes present as vacuum fluctuations.
Further, since at least in thig abelian gauge theory flux is conserved, these fluxes
in the vacuum plausibly could be excited to form observable moving strings of flux.
However, if the net flux in such a string were an AB quantum (Here ‘net flux’ includes
the accompanying vacuum-current induced flux), then low energy electrons would be
insensitive to its presence, since if the interior is not penetrated an AB quantum is
invisible, If net flux quanta other than zero were present in the vacuum fluctuations,
the vacuum would exhibit ‘spontaneous electric charge quantization’, in the sense that
a particle with a fraction of an electron charge would find its effective mass raised to
a vslue on the scale where the coupling becomes strong.

The picture of a vacuum containing magnetic flux strings with diameter char-
acterized by the strong coupling scale has been proposed before, by Nielsen and
Olesen,'® who used an intricate pattern of deduction to argue for the necessity of
such a flux spaghetti in the nonabelian theory QCD. From the renormalization group
point of view adopted here their argument seems quite natural. In QCD one may
characterize flux in a gauge invariant way by obtaining the Wilson loop function, the
trace of the gauge transformation associated with a particular loap in space. If that
gauge transformation is u multiple of the unit operator, then the suitably normalized
trace has possible valucs 1,e%™3, ¢=2™/3, Since gluons are insensitive to the presence
of any such flux quantum, one may wonder if the full bets function might vanish at
such values, leading to an enhanced likelihood of finding quantized fluxes, and there-
fore density enhancements in the complex plane near the above-mentioned values (for
which the group invariant density actually vanishes).

If we now introduce quarks, which lie in the fundamental representation of
SU(3), then the beta function will vanish for Wilson loop trace 1. However, for each
of the other two unit-matrix values, which would give a nontrivial Aharonov-Bohm
effect on the quarks, their weaker and nonvanishing beta function will oppose the
contribution from gluons, so that one expects the enhancements in concentration to
be near but not at these values. Nevertheless, such a pattern would imply strong,
locally correlated, color magnetic fields. These could well be a (or the!) critical factor
generating color electric confinement,

Consistency of QED?

At this point let us pause and take stock. We have been treading familiar
ground in the sense that it has long been known that couplings in perturbative field
theories generally have anomalous dimensions which give rise to increasingly strong
interactions as length scales get larger (QCD) or smaller (QED). If the coupling
studied is an Aharonov-Bohin coupling, then at least in perturbation theory it is
not divergent, but only approuaches unit strength, This invites us to consider the
AB coupling as a more reliable indicator of the true dynamics in the strong-coupling
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regime than the perturbatively divergent ordinary electric coupling. However, all of
this assumes that QED, in particular, is a consistent theory. What is known about
that?

Two different approaches give different answers. On the one hand, we know
that a theory extrapolated to a new domain may fail either because it lacks essential
physics, as Newton’s mechanics fails for relativistic velocities, or because the theory is
not consistent, with the inconsistency becoming dramatic in the new domain. There
is strong circumstantial evidence that A@* theory is consistent only for A = 0. In
perturbation theory there is a divergence as distance scales grow smaller, just as in
QED. This suggests that QED may be viewed as a ‘cousin’ theory with the same
genetic disease. However, the pathology in Ag* is such a borderline effect that it
is easy to imagine a cure resulting from very slight changes. On the other side of
this question, we have even stronger circumstantial evidence that QCD ia consistent.
Thus it becomes a question of which cousin theory is closer in itg essence to QED,
Mgt or QCD. If we choose the latter, then we need ask only the more limited but
still quite challenging question, "What are the dynamics of QED on short distance
scales? For that, the well-behaved AB coupling is an appealing guide.

Let us explore the consequences of assuming that tubes of flux become dynam-
ical degrees of freedoin on the scale where the coupling is strong. Such a tube would
have transverse dimensions in its rest frame, and also string tension, determined by
the strong-coupling scale. A charged particle localized on this scale would receive ax-
bitrarily large contributions to its effective mass from virtual flux strings of arbitrary
velocity passing by. On the other hand, a spread-out particle wave function would be
insensitive to these strings with their quantized flux. Thus the effect of this assumed
vacuum structure would be to make sufficiently localized particles so massive that
there would be negligible contributions from large virtual masses in loop diagrams
for vacuum polarization.

Now we may consider whether there is a mechanism to generate the assumed
flux tubes. Suppose a localized pair of electron and positron appear. If they overlap
spatially, then they have negligible Coulomb energy. If further they have parallel
magnetic moments then the energy is much lower than for antiparallel moments,
so that the Huctuation should last longer. Furthermore, reinforcing fluctuations at
neighboring locations are favored for the same reason. Thus correlated flux fluctua-
tions corresponding to virtual flux strings seem inevitable. There is an extra subtlety
in this argument. The notion of a magnetic moment is only simple in a nonrelativis-
tic context, but that is immediately applicable here since it is being supposed that
the electron becomes massive at the strong interaction scale, Thus the hypothesis
that QED is consistent and that small diameter flux strings populate space leads to
a picture of the vacuum which indeed hangs together, with the flux strings giving
mas3 to the electrons and so halting the divergence of the ordinary electric coupling

flux strings.
Having speculated this far, let us go a little farther. For pure QED with one
species of electron the scale factor for going from the electron Compton wavelength
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A to the strong coupling region is ™ ¥/2% = 10-%%_ However, in the standard model,
g

with U(1) of QED replaced by U(1)g, and three gencrations of quarks and leptons
included, the number in the exponent is reduced by an order of magnitude, and comes
to the vicinity of the value appropriate for the ratio of the Planck length to A.. Thus
relatively minor modifications of the standard model could lead to flux strings ap-
pearing on the Planck scale. Such a circumstance would engender a temptation to
identify the flux strings with the strings of string theory, which then could be treated
as derived objects. If known light particles were derived from string theory, this could
become the ultimate bootstrap!

Coda

We have arrived in the land of pure fantasy, but the fact that such a fantasy
even could be conceived is a testament to the reach and scope of the AB effect, which
at least perhaps might be not only the essence of guuge interactions but also the root
of the whole structure of the Universe. This makes it quite fitting to close with a few
personal remarks about the discoverers of the effect.

I met Yakir Aharonov a while ago, and by now have had a number of chances
to experience his unigue, adrenalin-raising approach to science. As with Nizls Bohr's
lucky horseshoe, it is not necessary to believe Yakir’s ideas in order to benefit from
them. Many others here can attest that even when disagreeing with him one finds he
has exposed deep aspects of physics whose further study is bound to be fruitful. He
comes closer than anyone 1 know to making the Socratic method a workable tool for
learning about Nature. It is no surprise that this meeting in his honor should exhibit
the same quality of excitement and discovery which we have learned to associate with
Yakir.

I looked forward to this conference as my first opportunity to meet David
Bohm, whom [ had admired since college. I took a course on quantum mechanics
in which the lecturing did not match my learning style very well, and his book was
my salvation. For reading by oneself the high ratio of words to equations proved
Juite congenial, leaving me at the end feeling that I had grown up knowing quantum
mechanics. That foundation has served me well ever since, and T am most grateful
for it. Its author, by showing much more courage than I in probing and questioning
the structure of quantum mechanics which he understood and explained so well, only
increased my admiration for him as a person perpetually restless in the search for
truth.

The paper of Aharonov and Bohm may have been the first scientific article I
read on my own rather than for a class assignment. I remember being impressed by the
striking simplicity of the argument but a little cautious because of the audacity of the
language. When Furry and Ramsey'” wrote a paper in response, the rumor I got from
fellow students was that they had put Aharonov and Bohun in their place, demolishing
the idea. Of course, when 1 read the paper it became clear that wasn’t so. Instead
they showed that the AB effect is necessary for the consistency of quantum mechanics,
in particular for the complementarity between observation of wave interference and
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detection of particle trajectories. The whole episode was a wonderful introduction to
science at the frontier. and shaped the work of many people. Not least significant is
the fact that the AR phase was contained in a paper published ten years before, by
Ehrenberg and Siday,'® who seemed to take the effect as a matter of course and thus
failed to focus on it the attention which it so richly deserves and has so richly repaid
since 1959.

This work was supported in part by the National Science Foundation under
Grant PHY 92-11367.
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AHARONOV EFFECTS FOR TWQ SLITS AND SEPARATED OSCILLATORY
FIELDS INTERFERENCLS

Norman F. Ramsey
Lyman Physics Laboratory
Harvard University
Cambridge, MA 02138, USA

ABSTRACT

The implications of complementarity on two path interferences
and separated oscillatory field resonances are discussed. furry
and Ramsey have shown that an apparatus to determine the
electron path introduces uncertainties in the scaler and vector
potentials that disturb the phase of the electron wave function so
much through the Aharonov-Bohm effects that the interference
fringes disappear. A similar result is derived for the neutron,
but with the phase uncertainties coming from the magnetic
moment's motion through an electric field discussed by
Anandar. Aharonov and Casher. The separated oscillatory field
resonance method can be interpreted as an interference between
two different paths in spin space. The same analysis as for the
neutron two path interferences shows that the separated
ereiliatory fiens resonance disappears when the orientation of
the neutron spin is observed between the two oscillatory field
regions. An interesting difference between the separated paths
and separated oscillatory fields experiments is that the latter may
be interpreted classically. An equal superposition of the two
orientation states along one axis corresponds to an eigenstate
relative to an orthogonal axis so the separated oscillatory field
resonances can be interpreted classically whereas this is not
possible with the two path interferences.

1. Introduction
It is a pleasure to speak at this conference honoring Y. Aharonov,

whose stimulating papers have added so much to our understanding of
quantum mechanics but I deeply miss David Bohm.
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I remember well the waves of surprise and disbelief that circulated
throughout much of the physics community on the 1959 publication of the
Aharonov-Bohm (AB) paper! that pointed out the possibility of observable
effects of electromagnetic potentials on charged particles unexposed to electric
or magnetic fields. Wendell Furry and I at that time were astonished but
willing to try to understand the effects from different points of view. As a
result we published one of the first papers supporting the' AB analysis2. We
pointed out that the (AB) effects for scalar and vector potentials were essential
to preserve the consistency of quantum mechanics and the principle of
complementarity. We showed that, without these effects of the scalar and
vector clectromagnetic potentials, it would be possible to observe two slit
interference patterns with charged particles while at the same time detecting
through which slit the particle went. Such an observation is inconsi-tent
with the principle of complementarity applied to a two slits interfercnce
experiment2. We showed that the AB effects would make the interference
pattern disappear if the path detection sensitivity were sufficient to determine
through which slit the charged particle went.

Since our early paper convinced many scientists of the validity of the
AB observations, the organizers of this conference urged me to review that
paper here. However, I was reluctant to repeat a 32 year old paper in a field in
which I have done no recent work. But, I then realized I could also analyze
two different problems from a similar point of view, so i agreed both to
review our old paper and to discuss the new subjects, even though the three
different reports produce a cumbersome collective title. The two new
analyses depend on the phase shifts of a neutral particle with a magnetic
moment moving through an electric field as discussed by Anandan3,
Aharonov4, and Cashert (AAC). The first of the three reports reviews our
old work under the title Comple nentarity and Two Paths Electron
Interfereages . The second is Complementarity and Two Paths Neutron
Interferences and the third is Complementarity and Separated Qscillatory

Fields Resonances.

2. Complementariiy and Two Paths Electron Interferences

The AB paper! considered the effects of both the scalar and the vector
electromagnetic potentials so Furry? and I did likewise. In the case of the
scalar potential we considered the idealized apparaius shown in Figurc 1 to
see if it could be used to detect through which slit the electron passed while
still observing the interference pattern. The detection of the slit traversed by
the electron is made by determining which way the test body of charge q is
accelerated before the electron emerges from the pipe. The test body is
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between two condenser plates separated by a distance / as in Figure 1. Itis
held fixed half way between them (x ={ / 2 ) until the waves are inside the
tube, and is brought back to this position before the waves emerge; thus it
produces no field between the pipes at any time when the field could act on

distant —e

il .
m E

Figure 1. Llectrostatic effects.

the particle. The test body is free to move during a time interval T when the
waves are certainly inside the pipes, and by determining the direction in
which the test body is accelerated during the time T we can find out which
tube contains the particle.

The potential difference produced by the presence of the electron in
one tube or the other is Vi=1¢e/ (2 C ), where C is the total capacity of the
condenser and attached pipes. The magnitude of the field strength is thus?

IEl =e/ Q@C). (1)
The force on the test body is q E. If its direction is to be determined, it must
produce a change of the momentum of the test body that is larger than the
uncertainty of that momentum Ap. To be relatively certain of the direction
we take the imparted momentum to

g |lEIT >2Ap. (2)
Displacement of a charge q from a central position at x = / 2 produces a
potential difference?

V=(g/C(x-1/2)/1 3
and the uncertainty of the potentinl difference is
AV = (g [ IC)Ax @

Substituting Eq. (1) into (2) and multiplying by Eq. (4), we have

geTAV /] (21C) >2(q/IC)ApAx - 2@/IC)h/ (@ n) (5)
Therefore,

eTAV>2h/ (2 ). {6)
By ABJ, if alternative electron paths involve the electron being in
electrostatically shielded regions with a poiential difference V for a time T the

wave functions will develop a difference of phaseof eV T / (h/ 2n).



Therefore the uncertainty in the phase differences between the lwo paths
caused the test body is
Ap=eTAV/(h/ 2m)>2 7

A phase shift uncertainty of 2 radians will obliterate the fringes, so the AB
effect of the electrostatic potential assures the consistency of quantum
mechanics by making it impossible to obtain interference fringes when the
electron path is known.

When 1 first reported on our work at scientific meetings in 1959, 1
introduced into the scientific literature a Charles Addams cartoon which has
since been used extensively. This cartoon shown in Figure 2 is a great
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Figure 2. Charles Addams cartoon.
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illustration of a fundamental difference between classical and quantum
mechanics. In a classical world the cartoon is a joke since a classical object can
not possibly pass through two separated regions at the same time. On the
other hand in a quantum world the wave function of an electron can
simultaneously experience the potentials at two separate regions of space.

With the AB vector potential effect, the analysis is similar but a coil
and an infinitely long infinitely permeable rod R are used for the path
defection as shown in Figure 3. The coils and plates are assumed to have no
resistance. With these assumptions there is no stray flux outside the rod and
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hence no field in the regions traversed by the electrons. Furthermore the
current induced in the search coil is then just that required to prevent any

change in the flux ®. Passage of the particle through either slit and on to the

]
disfant —»
screen

Figure 3. Magnetic effects.

screen is tantamount to flow of the charge e through one half turn since a trip
out and symunetrically back on the other side would be equivalent to a full
turn. Therefore, with N coil turns, the charge delivered to C is?

Q==2e/ 2N (8)

The characteristic time of the circuit?
T=(LCM?2/c 9)

is very long compared with the time of passage of the wave packet through
the apparatus. Thus we can have the advantage, as compared to the scalar
potential analysis, of ample time for the determination of the sign of Q.

The circuit has two canonically conjugate variables, the charge Q and
the flux linkage N @, which appear in the Hamiltonian for the equivalent
harmonic oscillator,

H=0Q2/2C+(N®)2/2L, (10)
and satisfy the uncertainty relation

AQN AP > hc [ 4 n. (1N

If we are to determine the sign of Q reliably, we mus! have

tQ1>24Q. (12)
From this and Eqs. {8) and (11) we obtain

eA® >2he/2r, (13)
AB point out thal there is a resultant phase difference

¢ = (2mefhc)@® (14)

between the waves that have passed R on one side or the other.
Consequently from Eq. (13) the spread in ¢ is given by
Adp=(2me/hc) AD >2 (15)
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3. Complementarity and Two Paths Neutron Interferences

The above AB analysis applies only to charged particles. However two
slit interference patterns for many years have been obtained with neutrons
and more recently with neutral atoms. One can attempt to to detect through
which slit a polarized ncutron went while observing the interference pattern.
Various methods can be chosen to detect the neutron path and for each there
is a corresponding uncertainty relation that destroys the interference pattern.
For example, an apparatus similar to that shown in Figure 3 could be used but
with neutrons polarized perpendicular to the paj or and with neutrons on
one possible path having to pass through the infinitely permeable rod. The
sign of the charge Q delivered could then be observed as in the vector
potential case discussed above. However, as in that discussion the
uncertainty in the magnetic field destroys the interference pattern when the
apparatus is sufficiently sensitive to determine the path.

A different method of path detection uses the fact that a magnetic
dipole of strength Jim moving with velocity v appears in a stationary
reference frame to have an electric dipole moment pg given by

pe=(v/c) xum, (16)

so the passage of the neutron through a condenser could be detected by
measuring the induced potential. The same Figure 1 with a different
interpretation can be used to describe the proposed experiment. Instead of the
four dark horizontal lines being interpreted as two pipes, they now represent
plates of two parallel plate condensers with the inner two plates connected
together. The neutrons are polarized perpendicular to the paper so the sign of
the potential induced by a passing neutron depends on which slit is traversed.
From Eq. (3) applied to each pole of an electric dipole, it can be seen that the
potential V1 induced during the passage of an electric dipole through one
condenser or the other is

Vi=tpug/(Cd) an
where d is the separation of the plates in the condenser. The magnitude of
the field E on the test charge is then

lEt=Vy [l =pg [(Cdl) =v upm/cCdl (18)
To be relatively certain of the direction q moves as in the AB electrostatic
discussion, we must have

24p <p=qV\ElT=qoupy T/ecCd!l = qum LicCdl (19)
wliere L = Tv is the length of the condenser.
But the detection mechanism in Figure 1, by Egs. (4) and {19) will have

an uncertainty in voltage of
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AV=gAx[IC >qh/4nlCAp >hdc/2r uy L (20)
But by AAC34 and Cimmino et al® the phase difference between the two sides
is

panc=(2x/k) [p -dr = dmpm Alc (hf2m)

=2upmLV/)dc(h]2n) (21)

where A s the lineal charge density which by the Gauss theorem is related to
the voltage across the condenser by

A=2VL/4mrd (22)
The uncertainty in the phase by Eq. (20) then is
Appac= 2umMLAV/ de(h/2x)>2. (23)

So the interference disappears just as the path of the neutron is detected.
4. Complementarity and Separated Oscillatory Fields Resonances

For the resonance melhods of separated or successive oscillatory
fields®7, the transition probabilities for a two level system can be exactly
calculated. Although the resulting formulae are useful in determining
spectral line shapes, they obscure the origins of the observed sharp peaks as
coming from an interference between two possible paths in spin space.
However, this origin can be clarified by deriving the transition formula in an
allernative, but equivalent form. For simplicity the same notation will be
used as in the original papers®? and consideration will will be restricted to the
special limiling case where the durations ¢ of the two pulses are negligibly
small except when mulliplying the transition inducing amplitude b, which is
assumed so large that bt is finite.

With these restrictions, the exact expressions®? for the probability
amplitudes after the interaclion of duraticn 7 in terms of those at times 4
just before the interaction simplify to

Cpcty+ 1 )=cos (bt )C,,(h) -isin (br) exp (iwt1)C(t1)  (24)
Cylty+ 1 )= -isin (br) exp Giwtr)Cultr) + cos( br ) Cy(tr)
However , following a finite period T with b = 0, the probability amplitudes
are related as follows:
Cp(ti+T)=[exp(-i2aWyT/h) ] Cp(ty) (25)
Cy(ti+T)=[exp(-iZ mW T [ID] Cy(t1 ).
By successively applying these relations it is casily seen for Cp(0) =1 and
Cy(0) = 0 that
Cy( T +27) =-isin (br) cos (bt ) lexp-i(w+ 27 Wy [1)T
rexp-iQ2a W, [h)T] (26)




The modulus squared of Equation (26) gives for the transition probability

| Co(T +27) 12=4sin2(bt) cos(bt) cos2(w —~wo)T/2 (27)
which is in agreement with the usual expression when the above
restrictions are applied.

In Eq. (26) the first term corresponds to the probability amplitude for
passing through the intermediate region in the original state p followed by a

transition in the second oscillatory field. The extra factor exp-i(w)T

arises from the phase of the oscillatory field at the time T when the transition
occurs. The second term corresponds to the probability amplitude of a
transition to state q in the first transition region with passage through the
intermediate region in state ¢. From the form of Eq. (26), it is apparent that

the factor cos 2 (0 —w p) comes from the cross terms between the probability
amplitudes for the two possible spin orientation paths between the two
oscillatory field regions.

In the case of the separated oscillatory field method, the analogue to
determining through which slit the particle passes is determining the spin
orientation state of the particle during the interval between the two coherent
pulses. In the case of neutrons this might be done by allowing the beam to
pass between two plates of a condenser and determining the orientation state
from the sign of the induced potential as in the previous discussion. The
analysis is the same as for the two slit case and the sharp resonances disappear
through the AAC effect just as the sensitivity becomes sufficient to detect the
orientation, as required by complementarity. Englert, Walther and Scully8
have recently and independently made analogous observations using a
micromaser with two field optical fringes.

Despite the similarities, there are fundamental differences between the
two slits and the separated oscillatory fields experiments with neutrons. The
orienlation state of the neutron is determined by a vector in three
dimensions and an equal superposition of them = +1/2 and -1/ states
corresponds to an orienlation eigenstate along an axis perpendicular to the
original axis. As a result the sharp resonance peaks can be interpreted
classically as the spin being flipped =/2 radians in the first oscillatory field and
being allowed (o precess before the next one. If the precession and oscillator
frequencies are the same, the second osciallating field will do the same thing
as the first, producing a maximum reorientation. If on the other hand the
frequencies are slightly different so that the neutron spin precesses an extra x
radians, the spin will be flipped back to its original position corresponding to
a minimum transition probability, thus providing narrow resonance even
with a classical interpretation. On the other hand, such a clas:ical
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interpretation of two slit interferences is not possible since there is no
reasonable classical interpretation for the probability amplitude
corresponding to the superposition of two different paths in space.
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ATOM INTERFEROMETERS

David E. Pritchard
Department of Physics and Research Laboratory of Electronics
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l. Introduction

It is a pleasure to speak at Yakir's birthday celebration, especinlly on the sub-
jeet of matter wave interferometers which his work has been intimately related to for
so many years. And the fact that we will be able to give the first report on expeni-
nients in which atoms are sent on both sides of a metal foil and then recombined adds
cven more enjoyment. But let me begin this talk from the atomic physics point of
View.

The ticld of atomic, molecular, and optical physics has been moving with in-
creasing velocity in recent years, and no subficld in this arca is currently developing
faster than atom optics and atom interferometers (both of which we have recently re-
viewed. %) About a dozen experiments that demonstrate atom wave interference or
atom interferometers have been performed during the last five years; ¥ ! results
which parallel demonstrations of optical devices that spanned most of the nincteenth
century, Even without further developments in atom optics, there now exist enough
useful elements to make a variety of atom interfercnce devices and interferometers.
The burst of activity in this area in 1991 was reported in most of the widely circulated
scientific maga -ines, '2 as well ns in recent review articles, 21314 Since these reviews,
two new groups have performed reluted demonstration experiments, 1% More im-
portantly, measurements are now being made using these devices. At this rate, we
anticipate that many applications of atom interferometers to probl-ms of scientific
and technical imporiance analogous to those of the last hundred years in optics will be
made in the remainder of the 1990°s. (This is not to say that we're smarter, just that
we have the theoretical understanding to chart a surer course, and much commerciatly
available technology with which to pursue it rapidly.) Since our judgement is that we
have now entered a period in which the most important advances involving atom in-
terferometers will be new applications rather than new interferometers, the remainder
of this presentation will concentrate on the four areas in which atom interferometess
appear likely to have signiticant scientific and technical applicaiions. Unfortunately
for those who have read our recent review, 2 there is little new to report in the couple
of months since that was written,

2. Atom Interferometer Applications

2.1 Atomic and Molecular Properties

We are pleased to report at this conference the fisst measurements made with a
scparated beam atom interferometer. The key point here is that separated beam atom
interferometers present the opportunity 1o subjeet part of the atom wave 1o an interac-
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tion which causes a phase shift and then to measure this phase shift by interference
with the unshifted part of the atom wave in the same state. An obvious application is
the precision measurement of the (ground state) polarizability of the atoms (or
molecules) in the interferometer, by subjecting one part of the atom wave to a
wniform electric ficld, We discuss such an experiment currently giving nice results in
our laboratory. We note that this is intrinsically a higher precision approach than
measuring the deflection in a ficld gradient, whether this is casured by
conventional ' or interference techniques. '’ We also note that polarizability
differences between two states of an atom have long been measurcd using optical
resonance techniques, and can also be measured in interferometers of the Chebotayev
type even though the two legs of the interferometer are not spatially resolved. 1518

Translation (\f] referenca
photudiods
signal
tiot wire
detector

Interacticn reglon

3 10.0tm '1 10 mkron coppe, for

L N

Ustall of ntersction replon

2mm gap on each skie

Figure 1: A schematic, not to scale, of our atom interferometer. ‘The 10 jim copper foil is between the
two arms of the interferometer (thick lines ure atom beams). The optical interferometer (thin lines are
laser beanis) measures the relative position of the 200 nm period atom gratings (which are indicated
by ventical dushed lines).

Our atom interferometer bas been deseribed in, * and is depicted in Fig. 1. 1t
uses thiec cqually spaced transmission gratings, @ standard interferometer design,
with about 2/3 of a meter spacing between the gratings. This configuration produces a
robust whitc fringe.!” We now use three 0.2 micron period nanofabricated 2
diffraction gratings which scparate the centers of the interfering beams by 55 p. We
collimated the sodium atom beam with 20 p slits so the edges of the two interfering
beams do not overlap. The atoms had a deBroglie wavelength of 16pm, The FWHM
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Figure 2: Interference pattern from 40 seconds of data ( — 1 second per point). The contrast is 25%
and the phase uncertainty is 17 milliradians, Detector noise background of 200 counts per second has
been subtracted.

of the velocity distribution of the beam was 11%, which determined the longitudinal
coherence length (1.0 R). The fringe amplitude was 820 cps, which would allow us to
determine the phase to 15 milliradians in 1 minute (Fig. 2).

An interaction region consisting of a stretched  metal  foil  positioned
symmetrically between two side clectrodes, each spaced 2 mim from this scptum, was
inserted in the interferometer so that the alom wave jn the two sides of the
interferometer passes on opposite sides of the foil. The septum was 10 cm long and
10 microns thick, but the shadow it cast on the detector was typically 30 p wide due
to slight deviations of the stretched foil from perfect flatness. Because we have a
conducting physical barricr between the scparated beams, we can npply different, but
uniform, electric and magnetic fields to the portions of the atom wave on cach side of
the interferometer.
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Figure 3; Stark phase shifts for voltages applied to the right (open circles) and the left (filled circles)
side of the interaction region. Phase shift per applied electric field squared in (volt/om) © is
l.22()(7))<10_5 for the left side and 1.224(7)% 1075 for the right side. This mcasurement
determines the dc polarizability of sodium with 0.4% statistical uncertainty.




If an electric field is put on one side of the interaction region the DC Stark shift
of the atom wave on that side will change the phase of the interfercnce pattern, The
Stark shift is

V=-ael2,

where o is the clectric polarizability and € is the applied electric field. The Stark shift
acts as a slight depression in the potential energy, V, as the atorn wave passes through
the electric field. This increases its spatial frequency (since the deBroglie wave
number is k = [ 2m(E - V)]%/n and E is conscrved), resulting in an increased phase
uccumulation relative to the wave that passes on the side of the septum with no field.
Since V is cight orders of magnitude smaller than E, the square root can be expanded
with the result that the differential phase shift is ¢=ol €¥/2v =V /i where [ is the
length of the interaction region, v is the velocity of the atoms, and t is the transit time,
We found that the measured phase shift was quadratic with the applied field within
crror, as expected, allowing us to detennine the polarizability of the ground state. We
found that putting the field on opposite sides of the septum gave the same absolute
value of the phase shift, giving a statistical error of 4% in — 20 minutes. We are
currently investigating several systemctic errors (the largest due to vardation of the
phase shift with septum position) which cumrently limit our determination of an
absolute value of the polarizability to ~ 1%. Figure 3 shows the phase shifts vs,
applied electric field.

Figure 4: Contrast revivals from constructive rephasing of the independent interference patterns of the
8 different magnetic sub-states of sodium, These patterns are dephased by a current flowing down the
septum which alicis the magnitude of the uniform magnetic ficld on the two sides.

We have also observed the periodic rephasing of the independent interference
patterns of the different Zeeman substates of the ground state as a differential
magnetic field is applied to opposite sides of the septum. To observe this, we first
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o applied a uniform magnetic field along the beam axis to determine the quantization
direction. By running a current down the metal septum, perpendicular to the plane of
the interferometer, we increased the field magnitude on one side of the interaction
region and decreased it n the other. This gave a differential Zeeman energy, and
therefore phase, for the two paths around the foil. The phase shift is proportional to
the current passing through the septum and the projection of the magnetic moment
along the quantization axis. Sirce our beam is unpolarized, the observed interference
pattern is a sum of interference patterns for each of the eight sodium ground states.
Since the g-factors of the F = 1 and F = 2 hyperfine levels Fave equal magnitude (but
opposite sign), there are only three different magnitudes of pivjected ma .ctic
moment. At low fields these are proportional to G, 1/2, and 1 tivaes a Bohr maguczton.
Consequently the independent interference patterns periodically rephase
constructively to produce a high contrast interference pattem with the same phase as
the pattern at zero fieid. This is shown in Figure 4. The first revival of conirast is the
point where the phase shifts are 47 for the | mgl = 2 states, 2x for the g1 = 1 siates,
and O for the my = O states. In this experimment, therefore, the informative variable is
the cortrast (not phase) vs. magnetic field.

The contrast versus differential magnetic field has the same shape as the
amplitude versus positior for a five slit diffraction grating whose central three slits
are twice as wide as the :xtremal slits. (To make this analogy more precise, we would
have to illuminat~ the grating with light of the appropriate spectral width.) Fig. 4 also
contains a fit to the data which correctly models the effects of our finite velocity
diribution and misalignment of the uniform magnetic field that determines the
quantization axis. Not only the relative positions of the contrast maxima, but also
their width and the degradation of contrast of subsequent rephasings due to the finite
coherence length is well accounted for by the model. The real significance of this
rephasing experiment is that (since the value of the Bohr magneton is accurately
known) one of the fit parameters is the average velocity of the atoms that successfully
tizke it through the interaction regin and contribute to the interference pattern. This
can be exploited to eliminate systematic effects arising from processes which cause
this final average velocity to differ from the average velocity of the atoms in the beam
upstream of the interferometer.

A For large currents down the foil, the average over the velocity distribution of
N the atom beam reduces the contrast in the interference pattern of all atoms except
those in the two mg = O states, which experience no Zeeman phasc shift. ‘Vhis will
- result in a contrast one-fourth of that observed for no current. At this point, any small
phase shifts observed from additi~nal interactions wouid be those of only ihe -0
states. By applying a large St: hase shifi to all of the substates, the contrast of
these me=0 states could be reut 1 to nearly zero while another polarization state
was shifted back into coherence with itself. This would allow experiments to be
performend on a polarized beam without the difficulty of optical pumping, (but without
the gain in intensity which such optical pumpinyg should bring).

What happens if the atom wave on one side of the septum passes through a gas
not present on the other side? From the perspective of wave optics, the passage of a
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wave through a medium is described in terms of an index of refraction whose real
part is proportional to the phase shift of the wave and whose imaginary part is
proportional to the absorption of the wave. For an atom wave passing through a
gaseoas medium, absorption will be proportional to the well understood total
scattering cross section, which is determined by the imaginary part of the scattering
amplitude at zero angle. The phase shift will be proportional to the real part of the
scattering amplitude at zero angle. Taken together, the absorption and phase shift
therefore determine the phase and amplitude of the scattering amplitude. In low
energy collisions this means that both the magnitude and sign of the scattering length
can be determined, an important advance since knowledge of the sign, hitherto not
measurable, is critical to predicting low temperature collective behavior.

2.2 Inertial Effects

Atom interferometers are sensitive to inertial effects because the atoms travel
freely (if field gradients are sufficiently small), whatever the acceleration of the
apparatus. The difference in position of the interference pattern when observed in an
accelerating vs. an inertially stable apparatus can be observed interferometrically,
giving a precise measure of the non-inertial behavior of the apparatus. To make these
ideas quantitative, first imagine atoms with velocity v passing through a matter wave
lens with focal length L/2 as shown in Fig. S; if the apparatus accelerates upwards at
a. the central atom ray appears to follow the curved path shown, and the position of
the image of the source will have a vertical displacement,

¥i = VyoR0) = 1/2 a 1) = —at? = — a(Liv)?,

where t is the flight time for distance L and Vy, is the initial y velocity necessary to
pass through the center of the icns. If the lens is converted into a separated Fresnel
biprism by blocking off its central dashed portion, the Airy diffraction patteru of the
icns will be converted into an extended interference pattern and the shift in position of
vhe central fringe can be measured as a phase shift,

p=2ny/d=-2nat¥d,

where d is the fringe spacing. The above expression also applies to a three grating
interferometer with grating period (or lattice spacing) d.

The equivalence principle dictates that the responsc of an apparatus with
acceleration g upwards must be the same as a stationary apparatus in a downward
gravitational field with strength g. Thus the phase shift in a gravitational ficld should

b+
oo | L]
& d | v

This result (with appropriate trigonometric modifications for finite opening angle) has
been checked using neutrons; 2! a small discrepancy exists. The application of more
complex interferometer configurations to the determination of the gravitational
gradient has also been discussed, 22
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Figure 5: With no acceleration (i), the atom image (dashed axis) from the lens (dashed) and the
diffraction pattern (solid axis) from the Frzsnel biprism (solid lines at edges of lens) line up at y = 0.
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When the apparatus accelerates upward (i), image and diffraction pattern are both displaced by yg-

(see Eq, 3).

If the apparatus is rotatin% with angular velocity ?i the atoms experience a
Coriolis acceleration ac = - 2 XV, For the interferometer discussed above, the

phase shift due to this rotation may be calculated by substituting this acceleration into
Eq. 4 with the result,

472
- 0 .
bc= I

assuming small opening angles in the interferometer. 'Tiis result has been verified for
both neutron?? and atom interferometers.

Although this equation expresses the phase shift in terms of the experimentally
specified parameters, it is customary to express the phase shift due to rotation in terms
of the enclosed area, A, by the atoms. For grating type interfe ometers this is
determined by the diffraction angle, B = A g/d, yielding ¢ = 2m/B €1- A, the familiar
Sagnac phase for matter wave interferometers, **

Atom interferometers cannot measure any new inertial effects intrinsic to
atoms, so the real question is one of technical pertormance. For rotation sensing, the
greater phase shift of matter wave interferometers relative to light interferometers of
the same configuration (by the factor mc/fwyg, = 10'%) suggests that improved atom
optics technology (especially a non-diffractive beumsplitter) should cnable atorn
interferometers to attain better precision thaa laser gyros. For measurement of the
local gravitational constant (or for accelerometers) the demonstration of sensitivity of
3%10% in the first slow atom interferometer by the Stanford group?® is very

encouraging, especially if further experiments verify the projected freedom from
systematic error.



2.3 Fundamental Measurements

The inherent precision available with interferometry makes atom
interferometers ideal instruments with which to make fundamental ‘‘null’’ tests (e.g.
of the charge of a neutral atom), Sensi‘ivity to phase (as opposed to energy times
time) will allow atom interferometers to probe physical processes that generate phase
shifts such as Berry’s (and other) topological phases (cf. a recent related proposal, ¥/
also discussed at this conference), the passage of atoms through a waveguide, or the
phase shift which accompanies surface bounces. In general it has not previously been
possible to observe these phase-generating effects.

A recent proposal by Anandan 8 and Aharonuv and Casher?? combines two of
these ideas: it is a topological phase which tests a fundamental tenet of quantum
mechanics — that a phase shift can occur in the absence of any classical force. A
study of this effect using neutron interferometers is presenied in these proceedings, 3¢
so we need not dwell on its desirability here. The advantages of using atoms are the
greater magnetic moment (partially offset by the large Stark shift which limits the
practical size of the ficlds which can be applied) and the greater intensity. Together
these should greatly reduce the statistical error and should also allow us to study, for
the first time, the predicted dependence on the dipole orientation.

Another important measurement is the precise determination of the momcentum
of a photon; an experiment underway at Stanford has been described, 3!

Before getting too carried away with the possibilitics of new tundamental
measurements, we should note that many fundamental experiments in matter wave
optics and matter wave interferometry have already been carried out using neutron
interferometers. A recent review of this work 32 serves as .oth a source of inspiration
and a standard of comparison in this field.

2.4 Direct Write Atom Holography

Looked at from another perspective, ¢r three grating interferometer is a
holographic apparaius that produces a real image in the plane of the third grating. By
changing the geometry (c.g. using the two first order beams from the first grating and
the second order beams at the second), this image can be made to difter from the
gratings used upstream (in this example it would be a grating with half the period of
the others). If the middlc grating were replaced by a calculated hologram (this would
be easy since the electron beam writer which writes the grating? is computer
coniroiicd), the resulting image could be quite arbiteary. Recently it has been
shown 33 that an atom image like the one just described can be written on a substrate
with resolution better than 3000 &, so the possibility of writing patterns of a
particular type of atom on a surface already exists. If some way were found to
develop this image (if it were written in silver, regular photographic techniques might
be applicable) it would be a directly written atom structure.
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3. Summary

The future of atoms interferometers looks bright: atom beams are inexpensive
and intense relative to neutron beams from reactors, several techniques have now
been demonstrated to make interferometers for them, and the atoms which may be
used in them come with a wide range of parameters such as polarizability, mass, end
megnetic moment. One can even imagine applications for molecular interferometers.
This assures the applicability of these instruments to a wide range of measurements of
both fundamiental and practical interest, Hence atom interferometers may now be
regarded as devices to think up experiments for. Ultimately they should become
sufficiently robust and simple that they can be regarded as instruments, to be applied
technologically or used in other experiments.

Our recent work on atom interferometers and atom optics is supported by the
Army Rescarch Office contracts DAALO3-89-K-0082, and ASSERT 29970-PH-AAS,
the Office of Naval Research contract NOO014-89-J-1207, and the Joint Services
Electronics Program contract DAAL03-89-C-0001. 1 am very grateful for all of this
support, for the heroic work done by my many graduate students, for enjoyable and
helpful discussions on the subject of this paper with C. Ekstrom and J. Schmiedimeyer
and for help preparing this manuscript from M. Chapman and T. Hammond,
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FASTER THAN FOURIER

Michael Berry
H.H. Wills Physics Laboratory, Tyndull Avenue, Bristol BSS8 1TL, UK.

Written to celebrate the 60th Birthday of Yakir Aharonov: deep, quick, subtle.

ABSTRACT

Band-limited functions f{x) can oscillate for arbitrarily long intervals arbitrarily faster than
the highest frequency they contain. A class of integral representations exhibiting these
‘superoscillations' is described, and by asymptotic analysis the origin of the plicnomenon
is shown 1o be complex saddles in frequency space. Computations confirm the existence
of superoscillations, The price paid for superoscillations is that in the infinitely longer
range where f{x) oscillatcs couventionally its value is exponcntially larger, For example,
to reproduce Beethoveen's ninth symphony as superoscillations with a 1Hz bandwidth
requires a signal exp| 1019} times stronger than with conventional oscillations,

1. Model for supecroscillations

My purpose is to decribe somie mathematics inspired by Yakir Aharonov during a
visit to Bristol severa] years ago. He told me that it is possible for functions to oscillate
faster than any of their Fourier components. This seemed unbelievable, even paradoxical;
I had heard nothing like it before, and Icamned only recently of just one reluted paper! in
the literature on Fourier analysis (see §4). Nevertheless, Aharonov and his colleagues had
constructed such 'superoscillations’ using quantum-mechanical arguments?2. Here T will
exhibit a large class of them, and use asymptotics and numerics to study their strange
properties in detail.

Consider functions fix) whose spectrum of frequencies k is band-limited, say by
Ikl<1, so that on a conventional view f'should oscillate no faster than cos(x). But we wish
£ to be superoscillator /, that is to vary as cos(Kx), where K can be arbitrarily large, for an
arbitrarily long interval in x. A representation that achieves this is

f(x,A,0)= 3«71'27:' I du cxp{ixk(u)}cxp{——zé—i— (u- iA)z} 1N

—o0

where the wavenumber function k(i) is even, with k(0)=1 and IkI<1 for real i, A is real
and positive, and & is small, Examples are

1 N
ky(u) = m—ui . ky(u)=sechu, ky(u)= cxp{—%uz}, kq(u) =cosu (2)
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Aharonov's reasoning (he suggested Eq.(1) with k4) was that when 8is small the
second exponential would act like a 'complex delta-function' and so project out the value
of the first exponential at u=iA. Thus f should vary as

f~exp{ikx} wherec K =k(id) 3)

Under the conditions above Eq.(2), k increases from u=0 along the imaginary axis, so
that K>1, (and for the given examples can be arbitrarily large), and so corresponds to
superoscillutions, What follows is a study of the small-& asymptotics of the integral
representing f. As well as justifying Aharonov's argument, this will dissolve the paradox
posed by superosciliations, by showing that when x>0(1/82) they get replaced by the
expected cos(x), and f gets exponentially large.

2. Asymptotics

The aim is to get un asymptotic approximation for small & to the integral defining
S, Eq.(1), which is valid uniformly in x, To achieve this, it is convenient to define

E=x8? )

so that Eq.(1) can be written

1(E18%,4,8)= 5_:}27 [ du cxp{»-glfw(u,g,A)} where @ = $(u—id) - i& k() (5)

—eoy

For small §, f can now be approximated by the saddle-point method, that is by deforming
the path of integration through saddles uy of the exponent and replacing @ by its quadratic
approximation near ug. fis dominated by the saddle with smallest Red. Saddies, whose
focation depends on & (and also A) are defined by

dd

=0 ieu= &k () + A] ©

Application of the saddle-point method now yives the main result:
. 1 2
cxn{uk Uy~ —iA }
ofixk(i)~ Ll - )
Jl ~ix82 k"(u,)

To interpret this formula, it is necessary to understand the behaviour of the dominant
saddle as & varies,

f= M
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When £<<1, that is x<<§ -2, Eq.(6) gives us~iA, and (7) reduces to Eq.(3); this
iy the regime of superoscillations. When £>>1, that is x>>8 -2, the saddles are the zeros
of k'(u); assuming for simplicity that & has a single maximum at =0 (as in the first three
functions in Eq.(2)), this is the only real saddle, and (7) reduces to

2
= mcxp{ix—}n} °"p{5%2‘} %)

This is the behaviour te be expected conventionally, that is on the basis of the frequency
content of f; in the infinite range of validity of Eq.(8), f is O(exp{A2/282} and so
exponentially amplified relative to the superoscillation regime.

As x increases, the saddle moves from iA4 to 0 along a curved wack, illustrated in
figure 1. This is the dominant saddle uy; its track resembles figure 1 for all £(u) of this
type that I have studied. There are other solutions of Eq.(6), whose arrangement and
motion are complicated and depend on the details of k(i), but they are not dominant and
so0 do not compromise the validity of Eq.(7) as the leading-order approximution to the
integral defining f, Eq.(1).

0 0.2 04 0.6 08 I

Reu

Figure 1. Track of leading <addle u, as £ increases from 0 10 oo, for the wavenumber function ks{u) in
Eq.(10), for A=2 (the track is similar for any k{(u) with a singlc maximum)

In understanding the oscillations, it is helpful to study the local wavenumber,

defined as
)
aft) =i 2L ) ©

As illustrated in figure 2, ¢(&) decreases smoothly from k(iA) (which is real) to 1 as £
increases. Note that the decreasc is rapid (this is truc for all k() that I have studied). This
has the important implication that to observe superoscillations it is necessary to keep &
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much smaller than unity, and if we want to allow x to be lurge, in order to observe many
superoscillations, & must be comrespondingly smaller, Eq.(4), and the exponential
amplification in the regime of conventional oscillation, Eq.(8), will be correspondingly

larger.

3
25
2
(%)}
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Figure 2. Local wavenumber g(§), Eq.(9), for the ks(w) in Bq.(i0), for A=2

None of the wavenumber functions in Eq.(2) gives an f whose integral
representation can be evaluated exactly in terms of special functions, However, if we
choose the wavenumber function

ks(u) = 1 — 4 u? (10)

we can ensure that it is band-limited ( lki<1) by restricting the range of integration in
Eq.(1) to lul<2. The resulting truncated integral is

2
f(x,4,8)= ﬁ; jd.u cxp{ix(l - %uz)} cxp{—jz%i-(u - iA)Z} (11
2

which be expressed in terms of error functions:

.
exp
Witing® |
: ) - (52
y crf{umwzms }Mrf{z-mzua
V2 +2ix? 52 +2ix8?
It is instructive to examine this in detail. The superoscillation wavenumber,

Eq.(3), is

R 2 Y]
e AS)= in(2+ A% + 2008 )}X

2{!+L\:§2‘
\ J a2)
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K =ks(id) = 1+4 A (13)
There is a single saddle, at (figure 1)
iA
= 1
w(l)=1177 (14)

and the local wavenumber is (figure 2)

2y _ g2
q(f,)=l+f—E—£,) 15)
2(l+£,‘2)

For this case, the saddle-point approximation, Eq.(7) gives

f(x,A,8) = ! expdix] 1+ A? exp A2
X, A, 7—1 +s? 5i1+x28"i 2i1+ xzﬁ“j (16)

However, the asymptotics of (11) includes contributions from the end-points
u=12 as well as the saddle ug. This can be seen by realising that the steepest path between
-2 and +2 runs from -2 to infinity in the negative haif-plane, through ug to infinity in the
positive half-plane, and back to +2. The end-point contributions oscillate conventionally,
with the wavenumber -1, s0 we must be sure that they do not mask the superoscillations
that exist tor small & The condition for this is that the absolute value of the Gaussian in
(11) must not exceed unity at the end-points. Thus

A’ -4 .
CXp —E:s-i—' <1, 1.C. A<2 (17)

(we include the equality because the end-point contribution is smaller than that from the
saddle by a factor §). Eq.(13) now implics that the maximum rate of superoscillation
obtainable with this model is K=3. (It is worth remarking that x=0, A=2 lies on the anti-
Stokes line for the error funictions in Eq.(12), that is, where the cxponential coatribution
from the saddle exchanges dominance with those from the end-points.)

The representation Eq.(1) does not have the form of a Fourier transform, namely
(for a band-limited function)

f(x,A8)= _}1‘"" piixg}f(q) (18)

[P
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It is however easy to cast it into this form. The transform f(q) depends on the inverse
function of k(u); this is multivalued, and the path of integration can be deformed into a
loop around a cut extending along the real axis negatively from the branch point at g=1
(the ends of the loop are pinned to the cut, at g=-1 for k5 and at the essential singularity
q=0 for k1, k2, and k3). Again there is a dominant saddle, which for sinall £ lies at g=K,
and the loop can b expanded to pass through this. All previous results can be reproducexd
in this way.

3. Numerics

The aim here is twofold: to compare the saddle-point approximation Eq.(7) with
the exact integral (1), and to exhibit the superoscillations. 1 carried out computations of f
for the wavenumber functions k1, k2, and k3 (Eq.(2)), but will displuy results only for
Re f (Im £ is similar) for k5 (Eq.(10)), with the truncated integral of Eq.(11), for which
the results are very similar., The computations will be exhibit. .1 for the fastest
superoscillations, namely K=3, that is A=2 (Eq.(17)), choosing 8=0.2,

Figure 3 shows the results. The superoscillations for small x, with period 2a/3 ,
are shown on figure 3a, and figure 3b shows a range of x where there are conventional
oscillations, with period more than 3 times greater (actually about 8.4 - cf. figure 2,
where £ ~ 1.6 corresponds to x ~ 40). In both cases, the approximation (in this case
Eq.(16)) agrees well with the exact expression, Eq.(12). For exumple, the fractional error
is 0.18 for x=2, and 2.8x10-18 for x=42. Notc the enormous ratio of the sizes of f for
large and small x; from Eq.(16), this can be estimated as exp(36)~1016 (the asymptotic
ratio of Eq.(8) is not attained in figure 3b). The transition between the superoscillation
and conventional regimes is clearly shown in figure 3c.

In these computations, the value A=2 is the largest for which the saddle dominates
the end-points. The competition between contributions shows up most clearly at x=0, for
which (12) gives

1 A
0,A4,8)=Reerf{-| v2 +i~= 19
£(0.4.8) { 5 ﬁ)} (9)
For A<, f is well approxirnated by the saddie contribution of unity, for A>2, the end-
points dominate and f increases exponentially, Eq.(17), masking the superoscillations for
small x. This is illustrated in figure 4. Even at the critical value A=2, that is, on the anti-
Stokes line for the function (19), the exact vaiue f=0.945 is close to the saddle-point
value f~1.
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Figure 3. Computations of £x,2,0.2) for the truncated integral, Eq.(11), showing (1), superoscillations,
and (b) conventional oscillations, Circles: exact expression, Eq,(12); full lines: saddie-puint
approximation, Eq.(16). In (¢) the logarithms are basg 10
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Figure 4, Computations of log If(0, A, 0.2)l, Eq.{19), for the truncated integral Eq.(11); logarithms arc
base 10. Note the exponential growth after crossing the anti-Stokes linc at A=2

4. Beethoven at 1Hz

Professor 1. Daubechies hay informed me that superoscillations are known in
signal processing, in the context of oversampling, This is sampling a furiction faster than
the Nyquist rate, i.e. at points x=n7 where the function is band-limited by kI<1. If a
function is oversan  led in a finite range, extrapolation outside this range is exponentially
unstable?. She quotes B. Logan as saying that it is possible in principle to design a
bandlimited signal with a bandwidth of 1Hz that would reproduce: Beethoven's ninth
symphony exactly. With the superoscillatory functions described in this paper it is
possible to give an explicit recipe for constructing this signal, as I now explain,

We require superoscillationy for the duration T (~4000s) of the symphony.

Therefore the desired signal B(#) can be represented as periodic outside this interval,
namely

. 2mnt }

N
B(t)= ¥B, cxp{l S (20)
-N r

Here N is the order of the Fourier component corresponding to the highest frequency
Vmax = N/T (~20kHz) it is desired to reproduce,

‘To approximate this with a signal band-limited by frequency vy« 1Hz) we ke
the replacement

cxp{i-z—{%} @, Q@




where (cf.Eq.(1)) @, is the superoscillatory function

N 1 .
@, (1= g_slf_i—; I du exp{i2ztv(u)} cxp{—z—sf(u -iA, )2} (22)
n n

Here the frequency function v(u) never exceeds (for real ) its band-limited value
v(0)=vg, and A, and J, will now be determined by the requirement that &,
superoscillates with frequency »/T for time 7",

~he superoscillation frequency of @& 4(f) is v(id,) (cf. Eq.(3)). Thus from
Eq.(21) A, must satisfy

V(iAn) = )

z
T
We fix &, by requiring that the superoscillations are maintained for time T, in the seiw
that the replacement of Eq.(21) remains a good approximation. For this we require the
next correction to the superoscillatory exponential that @,(f) represents. Expanding the
saadie-point approximation tc Eq.(22) yanalogous to Eq.(7)) for small £, we find

@, (1)~ exp{i 2’;’" } exp{anaﬁ[—v'z(iA,,)}rz} 24)

The secund factor is an increasing exponential, because v’(iA,,) is imaginary, ana must
remain close to unity for 0<¢<T. Thus

-1
8 <<[2nfv(iA, )T 25)
Choosiug A, and &, as in Eqs.(23, and (25) guarantees that the signal B,,(£), with
its frequencies up to Vimax, will be imitated for time 7. When T the imitation will grow
rapidly in strength, and eventually, that is when it is oscillating at the frequency vy
corresponding to its Fourier content, it will acquire an amplification factor corresponding

to iis largest Fourier component n=N. An argument analogous to that feading to Eq.(8)
gives this factoi as

2
. ) q 2
F = cxp{gg% } >> exp{Aﬁn2T2|vN (IAN] } (26)

with .y determined by Eq.(23) with the right-hand side set equal to vipax.

et us calculate this amplification for the model frequency function

v(u) = vy cxp{-u2} @27
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(cf. k3(u) in Eq.(2)). We find
A% = 1og{3mal} 28)
Yo
and hence, from Eq.(26),
F> t:xp{47::2 logz(v_""ﬁl)v%axﬂ} 29
0

For Beethoven's ninth symphony this gives

F>>» cxp{lOlg} 30)

This amplification will not be achieved antil a time #7, which can be estimated by the
argument preceding Eq.(8) as

-1 2 T2
tr ~[vod%] ~ !m‘éL— ~ 108years 31)
0
Other choices for V(i) give similar expressions and numerical estimates.

The estimate of Eq.(30) indicates that to reproduce music as superoscillations
requires a signal with so much energy as to be hopelessly impractable, but more modest
bandwidth compression might be feasible.

5. Concluding remarks

Aharonov's discovery, elaborated here, could have applications in several
branches of physics. One possibility is the use of superoscillations for bandwidth
compression as discussed in 84, Another example, also in signal processing, concerns
the observation of oscillations faster than those expected on the basis of applied or
inferred filters. These would conventionally be interpreted as high frequencies leaking
through imperfect filters, but the arguments presented here show that the phenomenon
could have a quite different origin, namely superoscillations compatible with perfect
filtering.

Perhaps more interesting are the possible applications of superoscillatory
functions of two variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the wavelength A would be resolved
by representing them as superoscillations. (This is different from conventional
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superresolution, which is based on the fact that Fourier components larger than 2n/A can
be present in the field near the surface of an object, but decay exponentially away from
the object because the wavenumber in the perpendicular direction is imaginary, With
superoscillations, the larger Fourier components are not present.)

Superoscillauons can probably exist in random functions f{x): arbitrarily long
intervals, in which f'is exponentially small relative to elscwhere, could superoscillate.
Consider how this might be achieved. If f is Gauss-distributed, its statistics are
completely described by its autocarrelation function, which by the Wiener-Khinchin
theorem is the Fourier transform of the power spectrum S(g) of f. Even if f is band-
limited, it ought to be possible to choose S(g) with analytic structure (saddles with
Re g >1, etc,) such that the autocorrelation superoscillates as it falls from its initial value.
This idea is worth pursuing,

On the purely mathematical side, it is clear that superoscillations carry a price: the
function is exponentially smaller than in the regime of conventional osciliations, with the
exponent increasing with the size of the interval of superoscillations. We have seen
examples of this, but there ought to be a general theorem (perhaps based on a version of
the uncertainty principle).
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BERRY'S PHASE, MESOSCOPIC CONDUCTIVITY AND LOCAL FORCES
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ABSTRACT

A ring in a magnetic field whosee direction varies in space is considered. It is shown
that the Berry phase accumulated by the spins of clectrons encircling the ring affects
the conductance of the ring in a way similar to the Aharonov-Bohm effect. A time-
dependent Berry phase is shown to induce a classical motive force in the ring. The
condition for adiabaticity is studied, as well as devialions from that condition, The
relation to spin-orbit coupling is discussed.

1. Introduction

This paper studies an effect of the geometric (Berry’s) phase()(®)on electronic
transport in mesoscopic and macroscopic systems.®The reader might be somewhat
surprized by the order in which the subject is presented below. To some extent, that
order resembles a prescntation of the theory of electromagnetism, but in reversed
order. A study of electromagnetisin usually starts with a description of Coulomb’s
and Lorenz’ forces. Then, the concept of potentials is presented, as a tool for calcu-
lating forces and fields. And finally, the special rolc given by Quantum Mechanics
to vector potentials, as geometric " phase shifters”, is introduced, and the non-local
nature of Quantum Mechanics is revealed. This paper, however, like many other
studies of Berry's phase, starts with an investigation of a quantum mechanical geo-
metric phase. In the case discussed below, the phase is accumulated by un electron’s
spin moving in a space-dependent magnetic field. Then, this effect is put in terms
of a vector potential. And finally, the effect of this vector potential on the classical
dynamics is revealed.

2. A conducting ring in a space—dependent magnetic fleld

The simplest example that illustrates the concept of Berry’s phase is that of
a spin-§ that follows adiabatically a magnetic field whose direction varies in time.
When the maguetic field returns to its initial direction, the spin wave function
is found to have acquired a geometric phase factor, given by half the solid angle
subtended by the magnetic field during its variation. This phase can be regarded

6"
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as induced by a geometric flux, similar to the phase shift induced by an electro-
magnetic flux in the Aharonov-Bohm effect.(*)(

Motivated by this similarity between the fluxes, we tum to investigate Berry's
phase analogies to two physical effects involving an electromagretic flux: the in-
duction of current in a conducting ring by a time dependent electro-magnetic flux
(through Faraday’s law), and the effect of time-independent flux on the conductiv-
ity of a mesoscopic ring (through the Aharonov-Bohm effect).(9(®)n these analogies,
the electron’s spin plays the role played by the electric charge in the electromag-
netic effects. Another analogy, introducing persistent currents induced by Berry’s
phase in ballistic rings, was recently discovered in an instructive work of Loss, Gold-
bart and Balatsky(®). In the following paragraph we define a thought experiment
in which electrons in a mesoscopic conducting ring follow adiabatically a magnetic
field whose direction varies spatially, abd thus accumulate Berry’s phase. By map-
ping that phase onto an effective vector potential, we show that when the phase is
time-independent, it affects the ring’s conductance. When the phase varies in time,
it induces a current in the ring. By discussing the analogies to the electromagentic
phenomensa, we point out that the effect of a time-independent geometric flux is
observable only in mesoscopic rings, while the effect of a time-dependent geomet-
ric flux should be observed also in macroscopic rings, i.e., it does not depend on
phase coherence. Since the adiabatic approximation is crucial for this discussion,
we «xamine the conditions for its validity, and its dependence on the disorder in
the -ing. We also comment on the remnants of the geometric phase in the non—
adial atic limit, and on the relations of these effects to spin—orbit coupling. While
for p-actical reasons our discussion i concentrated on the electric properties of the
ring, we nevertheless stress that the eleciric charye of the electron plays no role in
our analysis. Our resulls stem from the Zeeman interaction, and are therefore valid
for all spin-{ particles, irrespective of their charge.

We consider a quasi-one dimensional ring, whose radius is a. The ring lies
in the z ® y plane, and its center is in the origin. A non-uniform magnctic field is
applied on the ring in the following way: first, a magnetic field B, tangent to the
ring is induced by a current carrying wire lying along the z~axis. Second, a uniform
field, B,, is applied on the system, parallel to the z-axiz. Adopting a cylindrical
coordinate system, the total magnetic field has a component By created by the wire
at the ¢ direction, and a component B, at the i direction. Along the ring, the
magnitude of the field is constant, but the direction varies. In fact, it follows a
cone shaped path, where the angle between the cone and the z-axis, denoted by a,
sutisfies tana = ¢ (See Fig. 1). The spin of an electron that slowly encircles the ring
is then expected to follow the direction of the magnetic field and thus accumulate
a reometrical phase of

ﬂ;(” = (1 £ cosa) 1)

i.e., half the solid angle subtended by the the magnetic field it goes through (The 1, +
and |, — refer to the spin being parsllel and anti-parallel to the field, respectively).
The angle o is determined by the current through the wire and by the uniform field
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along the z direction, both of which we regard as the controlled variables in the

experiment.
2
* /8
¢
By

A

Figure 1: The physical problem considered. A ring is put in a uniform external magnetic field B,,
and a tangential magnetic field By created by the current carrying wire. The ratio between the two
fields define the angle a.

3. The adiabatic approximation

Our discussion of the above described thought experiment involves several
parts. In this section we use the Born—-Oppenheimer approach in order to separate
the Hamiltonian of the system into two parts, one (the adiabatic part) in which
the spin follows adiabatically the direction of the magnetic field, and one (the non-
adiabatic part) which is purely non-diagonal with respect to the eigenstates of the
adiabatic part. We show that the adisbatic part includes a geometric vector poten-
tial that couples to the electron’s spin. Assuming that the ring is one dimensionai,
its Hamiltonian is 2

H=gr+ V)~ uB(9) @

where Il = — i f— <Bu¥e iy the generalized momentum (a system of units where % =1 is
utilized), V(4) 1s the impurity potential along the ring, 4 is the magnetic moment, M
is the mass of an electron, and & is the Pauli mutrices vector. Attempting to discuss
the adiabatic limit, we diagonalize the spin dependent part of the Hamiltonian,
treating the angle ¢ as a parameter. Denoting the two eigenstates by [1(#)) (|1(#)),
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corresponding to the spin being parallel (anti-parallel) to the magnetic field, we

get )
on= (g ) e e = (g ®)

—En ¥y co8 %
The corresponding eigenvalues are ¥uB where B = ,/B} + B2. Defining now |¢) as
the cigenstate of the operator ¢, the two scts of states {|1(¢)) @l 0 d< 21}

and { ) @ 16) 10 < ¢ < 2:} coustitute together a basis of the Hilbert space of
the Hamiltonian (2) . Bach one of these sets span a subspace in which the spin is
either paralle]l or anti-parallel to the magnetic field. The impurity potential in spin
independent, and hence, it is diagonal in that baris. However, the kinetic part of the
Hamiltonian has matrix elements that connect states within the subspaces defined
above, as well as matrix elements that connect states of different subspaces, i.e.,
induce spin—flips. A simple calculation shows that the matrix elements connecting
states within the first sub-space are,

(16 @) o 1 = o LB @

The corresponding matrix element in the second subspace has Q! rather than .

These matrix elements demonstrate that within the adiabatic approxima-
tion, the spatial variation of the magnetic ficld induces & vector potentialPwhose
magnitude is independent of the electron's charge, but is rather determined by
the directicn of the spin being parallel or anti-parallel to the field. Following the
method outlined recently by Aharonov et.al.,(® we construct an operator A, in such
5. way that the operator gj{il - 4,]? has diagonal matrix elements given by Eq. (4),
and does not have any clements connecting states with opposite spin direction. A
simpl= calculation shows that

Ay = 51~ gin afcos @ - § — sinac,] (5)

Note that A2 = Jysina is a c—numb(‘r, and A, has non-zero matnx elements only
between states of opposite spin directions. Consequently, the separation of the
Hamiltonian to an adiabatic part, Hy, and a purely non-adiabatic part, H,, is given
by

2
Hy = %‘Jl_ +V($) — pub(d) -5 + sin? o (6)

1
8Ma?
and (

Hy= g0 (0 - A+ A(TL = 4,)] @)

By comstruction, Hp has a sei of eigenstates |n, 1) = |1(¢)) ® ¢} (¢) in which the

spin is paralle] to the field, and a 1 of eigenstates |n,]) = |[($)) ® ¥4(¢) in which
the spin is anti-parallel to the fiel. ‘he wave functions ¢}(¢) and vi($) satisfy
the Schroedinger equations HJWylY - EIM¢I) | where the Hamiltonians H]® are

given by,
710 - 1 I 1 Qi) ! F V() F ubl 1 ‘2
o {2M[ 2xa ! (@) F b+ AMal ™ } ®

i
|
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Each of these Hamiltonians is u projection of the full Hamiltonian onto one of the
subspaces defined above. The meaning of the induced vector potential becomes
clearer when one considers space translation transformations. The momentum op-
erator, p,, i8, of course, the generator of such a transformation, i.e., for any state
¥, (¢|e"";‘—"|w) = (¢ + ¢ol¥). In such a transformation, the electron is translaied
spatially, but the direction of the spin is kept constant. On the contrary, the gen-
eralized momentum appearing in the adiabatic Hamiltonian, I - A is the generator
of a different translation transformation, a transformation in which the electron is
translated spatinlly, snd the direction of the spin follows the direction of the field.

We conclude this section by emphasizing its main conclusion: Under condi-
tions in which the adiabatic approximation is valid, namely, H; can be disregarded,
the ring can be viewed as composed of two uncoupled electron gases. Those gases are
subject to the effect of different geometric vector potentials and opposite constant
potential energy, ariginating from the Zeemsn interaction. They are also subject to
the effect of identical electromagnetic flux B,74? und identical itnpurity potential.
Each of the two gases obviously does not huve a spin degeneracy.

4. Non-local and local effects of the geometric flux on electronic trans-
port

In the next part of the discussion we assuine that the magnetic field is strong
enough for the adiabatic limit to be applicable. The discussion of the precise mean-
ing of "strong enough” is postponed to the next section. Assuming that the Zeeman
encrgy pB is smaller thun the Fermi energy, ¢, our ring cousists of the two uncoupled
clectron gases described above. The electric conductance of the ring is then the sum
of the conductances of the two gases. As discussed extensively in recent years (O(®
the conductance of a mesoscopic ring depends on a magnetic flux threading the
ring, through the Aharonov-Bohm effect. For rings in the diffusive regime, the
flux dependence of the conductance is manifested in two differcut contexts, namely,
the average conductance of an ensemble of macroscopically identical rings and the
sample-specific fluctuations, The flux-dependent part of the average conductance
wasg calculated by Al'tshuler, Aronov and Spivak®*), and shown to be,

_e'a sinh(I')

b = _Tcosh(l‘) - cm(%’t) ®
where ¢ is the flux threading the ring, T'= %2 and Jy s the phase breaking length.
Adjusted for our purposes, this expression is written for one spin direction. In the
configuration we discuss, the flux threading the sample is a sum of an electromag-
netic flux ¢, = Bywa?, and the geometric flux ¢, = $8(1+ cos a), where the + refers to
electrons whose spin is parallel (anti-parallel} to the ficld. It should be noted here
that the sun of the two geometric fluxes corresponding to the two gases equals n
flux quantum. This stems from the fact that the sum of the geometric phases accu-
mulated by the two spin directions is 2». Since all propertics of tle ring arc periodic
with respect to one flux quantum, one can view the two electron gases ns subject to
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the influence of geometric fluxes of equal magnitude and opposite directions. The
total quantum correction to the conductivity is given by

o =

_ta sinh(T") + sinh(I') ]
I leosh(F) — cos(2ismteal) * cogh(T) — cos(2Hlenztl)

This quantumn correction to the classical Drude conductance results from interfer-
ence of pairs of time-reversed paths.(19The flux dependence stems from the phases
accumulated by those paths that en. “-cle the ring. When I > 1, the interference of
long paths that encircle the ring mo: than once is exponentinlly suppressed, and
the flux dependent correction to the conductivity can be approximated by

(10)

6o = — g‘: ) cm:(4———r;(:m ) cm(%) (11)

Then, the % periodicity of the Aharonov-Bohm oscillations of the conductance is
multiplied here by » geometrical factor, cuo(%a:-l). Note that the difference between
the Fermi wavelengths of the two spin directions is not reflected in the expressions
above, since the quantum correction to the conductivity is independent of kply.

The effect of the geometric flux on the wnmple-specific fluctuations of the
conductance is best understood when the periodicity of those oscillations with re-
spect to B, is considered. In the absence of geometric flux (By = 0), the ¢p flux
periodicity yields a field periodicity of AB, = 2%, irrespective of the spin direction.
In the presence f geometric flux, a veriation of H, varies both the electromagnetic
and the geom "ixes, Thus the periodicity with respect to B, is changed, and is
no more indepeu « 1t of the spin direction. Specifically, when B, € 8, (i.e., a — §),
the geometrical flux is approximately -‘,"ﬁ';t, and the B, period becomes,

éa

AB, = m (12)

where the +(—) sign refers to the spin being parallel (anti- parallel) to the field. The
magnitude of the sample—specific fluctuations is not affected by the geowetric flux,
1.e., it is of the order of f,:-

Egs. (10) - (12) suminarize our predictions for the effect of Berry’s phase on
the conductivity of a mesoscopic ring. We now turn to discuss the case of a time-
dependent geometric flux, and, in particular, the currents it induces in the ring. We
consider the case in which the tangential masgnetic ficld is By = B§coswt. In order
to avoid, at this stage, the complications involved in the analysis of the adiabatic
condition for that case, we limit ourselves to the case in which the eleciion gas is
completerly spin-polarized. This is realized when ep + w € uB,, i.e., the electron
gas is spin—polarized, and an absorbtion of an energy quantum hw still does not
allow electrons to flip their spins. For semi-conducting rings, this condition may be
fulfilled at fields of the order of 1 Tesls. By passing, we note that another way to
realize a completely spin polarized electron gas is by an injection of spin polarized
electrons through a ferromagnetic-met.lic interface.(!"Under the assumption of
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complete spin polarization, the electron gas in the ring is subject to the cffect of a
time-dependent geometrical flux

$o do 1
@ =——(1+c0la(t))=—-{l+ }
't 2 ;;1+(-Ef-coawl)7

Consequently, this gas is subject to a motive force ¢, given by ¢ = —%4fx, and this
motive force induces a current in tue ring, according to Ohm'’s law. Assuming that
B} < B,, the motive force induced by the time dependence of ¢, is
0 2

= —lﬁu(—ﬂg—/—lﬂ sin 2wt (13)
The frequency of the induced current is twice as large as that of By, so that it
can experimentally be distinguished from currents induced due to the wire being
not exactly perpendicular to the ring. For 4, = 1 Tesla, By = 0.2 Tesla und w = 1
GHz, this motive force has an amplitude of 10-7 Volts. Similarly to the electro-
motive force, the geometric motive force can be amplified if the ring is replaced by
a solenoid.

There arc a fcw poiuty that should be stressed regarding the case of a time
dependent geo~etrical flux. Firstly, contrary to the effect of a time independent
flux, the time dependent geometric flux exerts a force on the electron, (**similar to
the electric force exerted by s time—dependent clectromagnetic flux. Thus, similar
to the obseravtion of currents induced due to Faruday’s law, the observation of
currents induced by the geometric flux does not depend on the electron phase being
coherert along the ring. Those currents should be observed in macroscopic ringg,
as well as in mesoscopic ones, In fact, the force accelerating the electrons in the
case of a time depedent geometric flux is classical.(1¥Secondly, the motive force
induced in the ring is not electric, since if the clectrons were replaced by neutrons,
the picture would not have changed. The ficld, given by the derivative of the vector
potential with respect to the time, does not couple to the electric charge, but rather
to the direction of the spin. Thirdly, the origin of the motive force exerted on the
electron can be understood by noting that in our symmetrical structure the sum
of the orbital and spinor angular momenta in the z direction is time-independent
even when the angle o is time «dependent. Thus, a change in « transfers angular
momentum from the spin to the orbital motion of the electron. A more general
analysis of this force, from the point of view of classical equations of motion is
given in Ref. (13).

So far we have discussed the currents induced by the geometric  -otive force
only in the case of complete spin~polarization of the clectrons. Howev.r, the flux,
motive force and current ali depend on the direction of the spin. Therefore, if the
ring includes two electron gases with opposite spin directions, the currents induced
in the two gases are opposite in direction, and the net current is proportional to the
difference between the conductances of the two electron gases in the ring. Such a
difference arises from the 248 difference between the kinetic energy of electrons in
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the Fermi levels of the two electron gases.

5. Conditions for the validity of the adiabatic approximation

In this section we aualyze the conditions under which the non-adiabatic
purt of the Hamiltonian, H,, can be disregarded. Our discussion concentrates on
the time-independent magnetic field and on the non-local effects it induces in the
electronic transport of the ring. We start the discussion by considering the ballistic
case, where V(¢) = 0, a case for which the full Hamiltonian can be exactly diagonal-
ized. For a ballistic ring the eigenstates of both HIY are given by y1V(¢) = et
The matrix elements of i, connect only states of opposite spin direction and iden-
tical spatinl wave function. They are given by (m, | [Hi{n, 1) = —%E,l)-sinuﬁ,,'m, where
n' =n— e’ Consequently, the ezact eigenstates of the full Hamiltonian (2) are
given by

i@y = (0F) aa e (PRI g

where 7 is implicitly given by

W@ -1
coty =cotar + ?AT:E’;TE—si—n)_L; (15)
The correspouding eigenvalues for |n, ) nud i, |) are
b ] 2 [
By = s - B0 4 cony) 5 pbicos(— a) (16)

IMa? T T 4Mal

The adiabatic approximation taken in the previous sections amounts to ap-
proximating v = a for eigenstates for which the spin direction is parallel to the
magnetic field and v = o + » for eigenstates for which the spin direction is anti-
parallel to the field. As seen from Eq. (15) , the adiabatic approximation is valid,
for a ballistic ring, when uB % . The physical meaning of this result is better
understood when noting that #$- is the time it takes an electron whose momentum
is L to encircle the ring. The adiabatic approximation is then valid when this time
is much longer than the precession time of the spin. Since our main interest is in
the validity of the adinbatic approximation for electrons at the Fermi level, where
4= = vp is the Fermi velocity, the condition for the adiabatic approximation to hold
lB’ pBa

kTS
The exact solubility of the ballistic case allows for & detailed analysis of deviations
from the adiabatic imit. This analysis is given in the next section.

In the presence of impurity potential, the eigenstates of H]!¥ are not eigen-
states of the momentum operator 1, and therefore i, couples each eigenstate |n, 1)
to a continuum of states {m, [} {(and vice versa). Due to that coupling, each adiabatic
cigenstate acquires a finite lifetime, r. We now calculate this lifetime perturbatively

»1 (17)

-
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using the diagrammatic impurity technique.(® According to Fermi’s golden rule, the
scattering time from a state |n, T) due to the perturbation H, is

-(ln Lt )= 2 — =3 lim, tlHm, 1)26(EL - EL) (18)
B

(Note that H; is purely non—diagonal in spin statesy. While this lifetime is ~ mean-
ingful quantity for a given ring with a given impurity configuration, it is no  uitable
for impurity averaging — one cannot identify a state |n,1) in two rings of different
impurity configurations. Therefore, we define the average lifetime for a state with
cnergy k, X(E), as the average of L{|n,1)) over all states |n,1) with energy E:
tm=2 T 1750 — ED . 11l PS(E — ) (19)
[m,1)

where v! is the deusity of states with the spin parallel parallel to the field. The
corresponding expression for the lifetime of a state {m,[) has »! rather than o1
Next, we examine the perturbation H,. This perturbation ir a product of two
operators. The first, A,, flips the spin state from being parallel to the field to being
antiparallel, but does not affect the spatial wavefunction ¢}. The second, (11~ 4,),
is the projection of the velocity operator onto the spin—diagonal subspace. Thus,
the average lifetime for a state with energy £ is

LB = rslny B Dy Sy 88 — EDBCE - EL) | [ deul (@), o)
= KA TET HaF Ziya) (UnloB(E — H])08(E —~ H{) ) (20)

where ¥ = (i gy - %2x2). Note that the second line of Eq. (20) is all expressed
in terms of single particle spinless operators and wave functions. There are two
differences betwecn the two spinless Hamiltonians H}, H}. First, they differ in the
vign of the Zeeman energy. Second, they differ in the value of the geometric flux.
If the second difference is disregarded for the moment, then the Zeeman energy
difference can be absorbed in the energy arguments of the s-functions. When this
is done the two Hamiltonians become identical, but the cnergy arguments in the
two §-functions differ in 2sB. Then, Eq. (20) strongly resembles Kubo's formula
for the ac conductivity,
2
Tac(w) = 4’;: 3 (Walb(er + o~ Ho)o8(ep — Ho)oltn) (21)
¥n

Thus, one might expect that under conditions in which the flux sensitivity of 71, 5}
can be neglected, the average life-time L(E) is proportional to the ac Kubo conduc-
tivity, at frequency 2uB. This neglect can be expected to be valid up to a leading
order in L, an order in which the conductivity is given by the flux-independent
Drude formula. The diagrammatic calculation presented below shows that this
expectation is indeed correct.
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The diagrammatic calculation of Eq. (20) starts by writing

with ¢ being an infinitesimal real number, and G*(E), GA(E) being the advanced and
retartded Green’s functions. Note that H, is the adiabatic Hamiltonian, sncluding
the impurity scattering. Employing the conventional impurity technique, we first
calculate the contribution of the "classical”, Drude-type diagrams (see Fig. 2).
Those diagrams are calculated by approximating the Green’s function as diagonal
in momentum space, with an imaginary part ;1 added to the energy (7. being
the elastic mean free time), namely, GEl(p,¢) = —E—-_‘-%',‘-_f;)x_- and correspondingly for

GAY,GRL (A4, The energy EXY is given here by Ep = yip(p — Bp2e + £0,)? + ub.
Substituting these Green's functions in Eqs. (20) and (22), and taking only terms
of order ¢pry, we indeed find that the inverse lifetime is proportional to the Drude
expression for the ac conductivity.

1 D sin’ o D x* .4 0.(2uB)
T (2xa) 2 (2pBrep +1  (2xa)? 2 T (23)

where D is the diffusion constant, and e,., 04 are the Drude expressions for the ac
and de real conductivities. Eq. (23) is our first approximation for the impurity
averaged lifetime. Before proceeding to improve it, we first use it to get a first
approximation for the condition for adiabaticity.

Figure 2! The Drude—type disgrams sumined in the expression for the average lifetime, Eq. (23).

For an electron to be non-locally affected by the geometric flux, its spin
has to follow the direction of the magnetic field a time long enough such that the
geometric phase it accumulates is significant. Hence, when the angle o is of order
unity, the lifetime of the adiabatic states, given in Eq. (21), has to be longer than the
typical time it takes a diffusing electron to encircle the ring, m’,,‘-ﬁ This condition
is fulfilled when

2uBrg ® 1 (24)
Therefore, in the diffusive regime, the adiabatic approximation is valid when the
spin precession time is much shorter thin the time between elastic scattering events.
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In terms of the ac conductivity, the adiabatic assumption is valid when the Zeeman
energy is large enough so that the ac conductivity at the corresponding frequency
is much smaller thun the de conductivity, Eq. (24) is the condition for adiabaticity
also when o « 1. In that case, the lifetime of an electron has to be long enough
for the electron to encircle the ring a~! times — until it accumulates a significant
geometric phase. Thus, the condition for adiabaticity becomes L » 22 which
reduces to Eq. (24).

The inverse life-time 1 was calculated above only to the leading order ¢pra.
The next order contribution, independent of ¢y, should be calculated by summing
the maximally crossed diagrams, the Diffuson and the Cooperon. Agpin, these
diagrams are pr -rtional to those appearing in the calculation of the quantun
correction to the conductivity at frequency 248, with a difference in the flux sffecting
each of two Green's functions. However, as long as the Diffuson and the Cooperon
are expected to be a small correction to the classical Drude result (that is, as long
as kpl > 1), Eq. (24) can be accepted as a first approximation o the adiabaticity
condition. Then, the Zeeman frequency 2u# should be of the o ler of the inverse
elastic mcan free time. For such a high frequency, the quantum correction to the
conductivity is vanishingly small.®}® Therefore, for rings in the metallic regime,
where kpl > 1, Eq. (24) is the condition for adiabaticity.

Wo conclude this section by making n few comments regardiug the adi-
abatic condition (24) . Fimt, we interpret its physical origin. As argued by
Thouless,'contrary to the planc waves eigenstutes of free electrons, the single
electron eigenstates in a disordered system are superposition of plane waves, with
typical spread of 3, where ! is the clastic mean free path. In kinetic energy terms,
this width is translated into 2. Therefore, the matrix clements of the generalized
momentum operator, I, between states whose kinetic energy differ by nore than
2 are negligible. On the other haund, flips of the spin due to H, occur only at the
Fermi level, i.c., between states whose kinetic encergy differ by 2u8. Hence, when
the condition (24) is valid, the non adiabatic matrix elements between states at the
Fermi level are negligible, and the life--time becomes long. In fact, the condition
(24) can be understood ulso when one considers sn electron moving along a typical
one dimensional diffusive path ¢(f) (¢ is agnin the azimuthal angle describing the
clectron’s position). In the limit of a strong magnetic field, the amplitude of a
non--adiabatic spin-flip of the electron is given by(1908)

()= [ I0pear (25)

The states [1},]]) depend on time only through the time dependence of the path
#(t). Thus, the time derivative makes the scalar product {(j(t)i§;|i(#)} proportional
to the electron’s velocity. The amplitude a() becomes exponentially small when
the phase of e2##t oscillates many times during the characteristic period in which
the scalar prduct (1(1){4;11(1)) significantlly varies. This time is the characteristic
time during which the velocity varies significantlly, namely, the elastic mean free
time. Therefore, when the Zeeman frequency 2uB is much larger than the inverse
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elastic menan free time Eq. (25) yields an e:ponentia''y small amplitude. Second,
we comumeat that under the strong magnetic fields rev, dred to satisfy the condition
(24) , one should distinguish between the diffusive limit w.ry < 1 (where w, is the
cyclotron frequency) and the Landau levels imit w.r,; » 1. The relevant limit is
determined by the value of the electron’s g-factor, Here we assume that the diffusive
limit applies. Third, we - omment on the relevance of ¢ to interference effects. As
discussed above, the geometric phase accumulated by the electron depends on the
direction of its spin. If that direction is flipped at various points along the path,
this phase is randou ized. Heuce, non—adiabatic spin-lips dephase the interference.
In the present work we negglect all other mechanisms of dephasing, and thorfore r
i8 to be identified with the phase breaking time 7r4. It is then useful to calculate
tl-e ratio of the circumierences of the ring to the phase breaking length Ly = /D1y,
denoted 57 T

= e _ VIxsing (26)
=Ly = Vi

TVe emy hasize that vs long a8 no  “her dephasing mechanisms are present, this
ratio depends neither on the radiv 42, nor on the temperature 7. And finally,
we rote that for an elastic wan {ree time of 10-!! yec and a g-factor of 10, the
adiabat'city condition {24) ix satisfind for fields larger thau 0.1 Tesla. The ring can
be approximated as one dimemnsional as long as ils cross sectional ares s satisfies
Bys € ¢o (where ¢o is the flux quantum). i.e., as long as it is almost not threaded
by magnetic flux cveated by By, For B, = 0.1 Tesla, the cross sectional area has to
be smaller than (20004)3.

1

6. Kemunants of the geometric flux in the non-adisbatic case

Our analysis of the effect of the geometric flux on transport properties of
tle ring has so far concentrated on the adiabatic limit. We now turn to discuss the
non-adiabatic limit. Again, we distinguish between balli:tic and diffusive rings.

The exact solution of the balisiic case was given above, in Eqs. (14)-(16) of
gection (5). For the convenience of the reader we rewrite the solutions here,

In, 1)) = ™% ( cos }c—ié) and n, 1(6)) = ™™ (iain "'-e—-'i) 7)

—sin cos T
The angle 4 is implicitly given by
W@ -1)
4Ma?uBeino

so that for any finite value of ¥ it is smaller than o. The corresponding eigenvalues
are

coty = cota + (28)

a2 Ao - 1)
B = garas ~ —abgaT
The significance of the angle v is understood via the calculation of the expoctation
velues of the projection of the spin onto several axes, We calculate these expec-
tation values fo. the [n, 1) atate. The generalization for the In, |) states is obvious.

(1 £cosy) ¥ pBeos(y~ a) (29)
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First, we note that the expectation value of ¢, is cosy, i.e., v is the angle to which
the spin bends relative to the z—axis. It ia then pot surprising to find that the
expectation value of the spin projection onto the direction of the magnetic field is
cos(y—a). Two other spin projections of interest are the projection onto two di-
rections perpendicular to the magnetic field, the direction of %—f—, which is here the
radial direction, and that of 5 x %%. 1t is a matier of simple algebra to find that the
former is zero, while the latter is sin(y - a). The significance of the last two results
and their rel vance for the understanding of the forces acting on the electron are
discussed in Ref. (%,

As seen from the exact solutions Egs. (27)—(29), when the magnetic field is
not strong enough to force the spin to bend in an angle «, the spin bends to a smaller
angle v < a. The Zeeman enecgy is then proportional to the projection of the spin
onto the magnetic field, and the induced vector potential is still of the form found
in the adiabatic case, but with the angle o replaced by . However, in the adiabatic
. limit the vector potential was determined only by a and the direction of the spin.
Thus, it deserved the name "geometric”. In the non-adiabatic case the vector
potential depends, through the angle 7, on the magnitude of the magnetic field aud
the valocity of the electron. Eigenstates of different velocities are then subject ¢+
different vector potentials. The vector potential is no more purely geometric.

The observations discussed above in the context of the ballistic czse allow
for & qualitative understanding of the non-adiabatic limit of the diffusive case.
Diffusive eigenstates are built out of superposition of many momentum {or velocity)
components. If the magnetic field is too weak to force adiabaticity, each of these
components is subject to a different vector potential, and thus also to a different
flux. If the range of fluxes induced in the different momentum components is of the
order of a flux quantum, the =nergy of the diffusive eigenstate loses its sensitivity
to the direction of the magnetic field, and the geometric effects are lost.

. ———— e -

7. How is the geometric flux related to spin—orbit coupling?

Some of the phenomena discussed in this paper, and in particular the mul-
tiplicative factor in Eq. (11) are similar to the phenomena that has been shown
by Meir, Gefen and Entin-Wohlman(!”to result from a one-dimensional ring of
spin-orbit scatterers. It is instructive, then, to devote this section to the relation
between the geometric phase and the spin-orbit coupling. This relation bhecomes
clear when the spin—orbit coupling is expressed as a vector potentiai. The origin of
the spin—orbit coupling lies in the coupling of & moving magnetic moment ji= f&
to an electric field £. In the frame of reference i which the magnetic moment is ut
resi the electric field is Lorenz-trensformed to a magnetic field. If the velocity of
the nagnetic moment is slow compared to the speed of light, the magnetic field in
the res* frame is given by ¢ x E. The magnetic moment couples to that magnetic
field ' .2 the Zuwman interaction, thus yielding an interaction term ji- ¢ x E = ¢. 2 x E.
Havirg in mind the interaction term of an electron with an electromagnetic vector
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potential 7. A, we find that £x E = ;£4,#x E can be identified as the spin-orbit vector
potential. When the magnetic moment arises from the internal spin of a charged
particle, as in the case of an electron, the acceleration of the particle due to the
interaction of the charge with the electric field has to be taken into account, and
this leads to a correction factor of § to the above expressions. This factor of } is
known as the Thomas precession factor.(!®Similar to the geometric vector potential
discussed in this paper, the spin—orbit vector potential is, in principle, space and
spin—dependent, and its values at different pointa in space do not necessarily com-
mute. It is important, however, to note the differences between the vector potential
resulting .rom the spin—orbit coupling and the one resulting from the Zeemai: in-
teraction with a space dependent magnetic field. The first difference has to do with
the symmetry with respect to time reversal. While the spin—orbit interaction gives
rise to a vector potential, it does not break time-re -sal symmetry -- it does not
induce a ¥uB term. Thus, for each eigenstate for which the effective spin—orbit
flux is @, there is another state, degenerate in energy, for which the effective flux is
~&. This is Kramers' degeneracy. O the contrary, the effective flux induccd by the
space-dependent magnetic field is accompanied by the Zeeman energy, that removes
the degeneracy. The second difference is a differcnce in magnitudes. Being inversly
proportional to me?, the spin—orbit interaction term is very small, unless it invloves
very strong electric fields. In the coutext of condensed matter physics such fields are
not "man-made”, but rather result from microscopic molecular charge distributions.
The microscopic molecular fields are strong enough to make the spin—orbit coupling
significant. Towever, they also vary strongly over microscopic length scales. Thus,
when the spin-orbit vector potential results from such microscopic fields, it is a
random quantity with a microscopic correlation length. As such, it is uncontrol-
lable, and usually its effect has to be everaged. This averaging gives rise to the
weak anti-localization effect.('®)The geometric flux resulting from Berry's phase, on
the other hand, is determined by the externally controlable magnetic field. It is
also worth noting that while both effects are geometric, i.e., can be expressed as
resulting from a vector potential, the origin of their geom~tric nature is completely
different.

Finally, we note that the understand' 1g of the spin—orbit coupling as emerg-
ing from a vector potential is useful for a simple analysis of the subject of "hidden
momentum” that has attracted some attention in the context of the theory of elec-
tromagnetism. (3%
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LANDAU-ZENER TRANSITIONS
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ABSTRACT

Adisabatic theory predicts the conservation of quantum numbers in processes with a
slow time-dependence, or in systems with slow and fast degrees of freedom. When
time scales are not infinitely separated, that is, when there is a breakdown of adi-
abaticity, then there is some transfer of probability from one slow quantum state
to another. This transition probability is given by the famous furmula of Lan-
dau, Zener, and Stiickelberg in the case of coupled, one-dimensional Schrodinger
equations. This paper presents a generalization of this formula to general coupled
Hermitian systems in one dimension. It is shown that the generalization is al-
most uniquely determined by the necessary invariance of the transition probability
under three groups of transformations, namely, scaling tran formations, canonical
transformations, and Lorentz transformations. The final formula for the transition
probability is a simple function of the simplest quantity one can construct which is
invariant under all three of these groups.

The topic of this paper grows out of the theory of adiabatic procesres and

geometric phases in quantumn mechanics, so 1 will begin by recalling some principal
results in this ar:a.

Consider a Hamiltonian which is parameterized by certain parameters R

which are slow functions of time:

H = H(q,p, R()).

1ue usual adiabatic {1 -orem of quantum mechanics asgserts that the state,

J(1)) = O u(t))

is an approximate solution of the time-dependent Schrédinger equation,

ihg“tw'(t)) = H(R)) (1)),

where [n(t)) ir an instantancous eigenstate of the Homiltonian,

HRM®)In(®)) = B (R(1)In(2)),

and where the phase 4(t) is given by

7(t):——;:/‘ Ea(R(1")) dt’+/ A(RY) - dR.

path

m

(2)

(8)
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Here the first term is the so called dynamical phase and the second term is Berry's
phase.! The differential form in the second term is a 1-form in parameter space,
given by

A=A .dR = i{n|dn). (6)

Thus Berry's phase is the line integral of the 1-form A along the path or history
of the system R(1) through parameter space, and the accumulated Berry’s phase
around a closed loop is given by Stokes' theorem in terms of the closed 2-form
B =dA.

The 2-form B has singularities in parameter space, similar to the singularity
in the magnetic field of & monopole at r = 0. If the Hamiltcnian in Eq. (1) has
no particular symmetry (as we will assume), then these singularities occur on a
manifold of codimension 3 in parameter spuce. This is because the singular manifold
is surface on which the energy level E,(R) is degenerate with another level, E,(R) =
Em(R). These singularities serve as sources for Berry’s curvature form B.

However, the condition which must be satisfied for the adiabatic theoremn
to be valid is that energy levels must be well separated. More quantitatively, the
condition is P B

n — Lm

A T @
which is a way of saying that the transition frequency between the lev.1 B, of interest
and the closest other level E,, must be large in comparison to the typical frequency
component of the Hamiltonian H. Therefore if the history of the system R(t) should
pass close to the sources of Berry's 2-form on the singularity manifold, then the
adiabatic theorem and tlie results quoted in Egs. (2)~(6) will break down, Let us
therefore introduce & perturbation parameter,

KA
= WE. = Fn)’ (8)

€

so that adiabatic theory can be systematically developed as an expansion in powers
of ¢. (More precisely, € is a typical value of the right hand side of Eq. (8), or a
scaling parameter for a family of systems,) Then we find that the results quoted
in Eqs. (2)-(6) above are the leading terms in an expansion in ¢, aud that there
are higher order terms which can be worked out. For example, Berry’s phase is a
correction which is of order ¢ in comparison to the dynamicul phasc.

Now let us generalize the situation, and allow the parameters to become
dynamical variables themselves. That is, let us replace R by (Q,P), which are slow
degrees of freedom, so that the (now time-independent) Hamiltonian reads,

H = l{q,p;'},P), 19)

wheie (q,p) are the fast degrees of freedom as beforc ‘The best known example of a
Hlamiltonian of this type is the Born-Oppenheimer linmniltonian which is so useful in
molecular physics. We may allow the slow degrees of freedomn to be cither classical
or quantum mechanical, but, even in the case in which they are quantum mechanical
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variables, it is often useful to ireat them by semiclassical methods. This is because
the separation of tite scales often implies that the slow quantum numbers are large
(as when slow and fast energies are comparable).

Therefore in either case it is appropriate to think of a classical phase space
for the slow degrees of freedom, which becomes identified with the parameter space
discussed above. This classical (Q,P) phase space naturally supports the symplectic
i-form §s = P - dQ as do all classical phase spaces, but it also supports the 1-form
for Berry’s phase, 85 = i{n|dn). It is gcometrically reasonable that these two 1-forms
should be linked somehow, and, indeed, as shown first by Kuratsuji and lida,? there
is an effective symplectic 1-form which is the sum of the two,

fure = P - dQ + ihi{n|dn), (10)

which governs the semiclassical quantization of the slow degrees of freedom. That
is, when the slow degrees of freedom are viewed on a semiclassical level, the average
effect of the fast degrees of freedom appear as a modification of the classical sym-
plectic form. Greg Flynu and [ have developed these issues in the context of WKB
theory, and explored some examples.?

We now introduce some fixed basis |a} for the fast degrees of freedom. By
“fixed” we mean that these basis vectors do not depend on the slow variables (Q, P);
fce example, in the Hamiltonian for a molecule, we could introduce a harmonic
oscillator basis for the electronic wave functions. Then the Hamiltonian of Eq. (9)
becomes a matrix in the fast indices,

H{q,p; Q. P) — Hup(Q,P), (11)

and the 5:hrédinger equation becomes a system of coupled wave equations in the
slow variatles:

|Hap(Q. P) ~ £ ap | ¥p(Q) = 0. (12)
For example, She moleculur Haniltonian has the Born-Oppenheimer form,
P .
(G5 ~ &) un 4 Vari@)] (@) =0, (13)

where Vop is & ma'rix of potential energies. There are no gange terms in Eq. (13)
Lscanse we bave ueed o fixed basis. More generally, we have a system of coupled
wave equations which we write in the form,

Dap(Q,P)¥p(Q) =10, (14)

where D is a matrix of operators in the slow variables, It is By. 114" which we wish
to treat by semiclassic:] methods, making as few assumptions ns possible about the
operators which appea: as the componeuts of D.

As s well known., scmicla..ical wave functions are represeated in the classical
phase space by means of so-called Lagraugian mavifclds,* whicl are N-dimensional
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surfaces in the 2N-dimensional phase space upon which the symplectic 2-form van-
ishes. Here N is identified with the number of slow degrees of freedom. As long as
adiabatic conditions are satisfied, the WKB solutions of Eq. (14) can be developed
in mam.aer which is much like standard semiclassical theory, except for interesting
issues regarding the gange form 05 and its role in quantization. I will not go into
this here, but rather I will devote the rest of this paper to another question, namely,
what happens if the Lagrangian manifold of dimensionality N should pass close to
the singularity manifold of codimension 3?7 This latter manifold can be scen ss the
manifold upon which the matrix D, regarded as a function of classical variables
(Q,P), has a double vanishing eigenvalue, i.e., it has a corank of 2 or more.

The answer, roughly speaking, is that there will be nonadiabatic transitions
between the fast cigenstates [n) and jm). These are the so-called Landau-Zener-
Stickelberg transitions, and the process is sometimes called “mode conversion.”
The original treatment of Landau,® Zener,® and Stiickelberg” was applied to the
case of coupled Schrédinger equations of the form of Eq. (13) in one slow degrec of
freedom, They derived the transition probability,®

2xA? ) ' (15)

T=ow (~ huafVyy — Vg,
where A, Vi1, and Vi; are parameters of the potential energy matrix at the mode
conversion point, where the prime indicates an X = Q derivative, and wheve v 15 the
velocity at which the particle moves through the mode conversion region. This case
has been subject to sixty years of investigation, and is now quile well understood.
For our purposes, the important thing to notice about this result is that it scules
as e/ in the adiabatic perturbation parameter introduced in Eq. (8). Thv:, we
see that these nonadiabatic transition probabilities are beyond all orders in ¢ and
cannot be obtained by straightforwacd perturbation methods,

Coupled Schridinger equations in higher numbers of slow degrees of freedom
are nnportant in molecular scattering theory, and are still an active area of research.
For more general wave equations of the type shown in Eq. (14), special cases have
been studied in one slow degree of freedom, but almost nothing is known about the
case of higher degrees of freedom. For the rest of this paper I will concentrate on
the case of mode conversion in one slow degree of freedom, treating the general case
indicated in Eq. (14). T will henceforth write (Q, P) for the slow variables (in italic
type), since there is only one degree of freedom.,

Thus we consider coupled wave cquations of the form,

Dap(Q, PYap = 0. (16)

The matrix I of slow operators can be of any size, but withoul essential loss of
generality it can be restricted to a 2 x 2 matrix. This is because the breakdown of
adiabaticity, when it occurs, generically only involves two different levels E, and
Em. Of course it is possible that more could be involved, and there is the very
interesting possibility of slobal degeneracies, but here for simplicity we will take
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the most generic case which is that of two interacting levels. Then onc can show
that adiabatic transformations can be used to reduce the original system to a 2x 2
system, essentially by block diagonalizing the original /7 matiix and leaving a 2x 2
block on the diagonal.

Accepting this, we can write the coupled wave cquations in the form,

(pu@m pam) (B)=o

Since we sometimes think of the slow variables (Q, P) in a semiclassical sense, we will
sometimes treat the matrix D as a matrix of classical functions of (@, P) (not opera-
tors). Thus, D becomes a Hermitian matrix ficld over the slow phase space. There
will be a breakdown of adiabaticity and subsequent Lundau-Zener-Stiickelberg tran-
sitions between fast every, 'cvels when both eigenvalues of this muitrix are small in
some region of phase space. Our goal will be to compute the transition probability 7
in such a case, and thereby generalize the Landau-Zener-Stiickelberg formula given
in Eq. (15).

We will base this computation on symmetry arguments. We argue that the
transition probability 7' inust be o function of Dy and its derivatives with respect
to @ and P which is invariant under three classes of symmetry operations. These
transformatious are scaling transformations, symplectic or canonical transforma-
tions, and Lorentz transformations. We will now explain these transformations in
greater detail.

The scaling transtormations involve simply multiplying Fi. (17) through by
some constant a, so that D — af. Such a transformation of course changes nothing
essential about the wave equation itself, and the transmissiou probability 7 must
therefore be invaniant, T -+ 7. This implies that 7" must be a homogencous function
of degree 0 of Dap and its derivatives,

Next we invoke canonical or symplectic inviriance. It is now well understood
that when quantuin mechunical quantities which are independent of representa
tion, suteh as energy levels cr transition probabilities, are computed by seniclussical
means, then the semiclassical expression must be a canonical invariant. A nice ox-
ample of this is the Bohr-Sounnerfeld or EBK formnla for cuergy lovels; the energy
levels are given in terms of elassical netions, which are nviniant vuder canonical
transformations. In the present ease, we expect T to be invariaut under canoniceal
transfornations, which means that all @ ana P derivatives of 1,5 which occnr in
the expression for 7 must be expressible in terms of Poisson hrackets.

The third class of traustormations involves Lorentz invariance, If we repliace
the 2-component ¢-ficld shown in Eq. (17) by @ constant lineir transformation of
iself,

amn

f

B Q9 (18)

where Q is any invertible 2 x 2 matrix (possibly complex), then the Hermiticivy of
the equations is preserved if we write

n-=Qthq. (19)
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Obviously the transition probability cannot change under such s transformation,
s0 we expect the formula for 7" in terms of Dys to be invariant when D is replaced
by D' as in Eq. (19). All we require of the matrix @ is that it te invertible, but,
without Joss of generality, Q can be restricted to have unit determinant, since if the
determinant is not unity, it can be made so by a scaling transfo,mation such as
those we have already considered. Thus, Q can be restricted to the group SL(2, ©),
the spinor representation of the Lorentz group.

One might have thought that unitary transformations would be sufficient
to solve the problem at hand, but this turns out not to be the caue; in order to
obtain the necessary normal forms which underlie this generalized Laindau-Zener-
Stiickelberg theory, it is necessary to invoke nonunitary transformations.

To bring out the Lorentz invariance more clearly, we write

D(Q,P) = B¥(Q, P) oy, (20)

where o, = (I,04,0y,0,) is the usual d-vector of Pauli matrices, so that 5* is a 4-
vector field defined over the slow phase space. Then under the transiormation of
Eq. (19), the 4-vector B* transforms according to

BY — AR, B, (21)

where A%, is @ 4 x 4 Lorentz transformation. Therefore the transition probability 7'
must be a Lorentz scalar when expressed in terms of the 4-vector 5#,

Altogether, we require a quantity which is a simultaneous Lorentz scalar and
a symplectic scalar, and a hornogeneous functiou of B* of degree 0. We begin by
listing the simplest simultaneous Lorentz and symplectic scalars we can write down.
We use Poisson brackets (denoted by curly brackets) to guaruntee that we have a
symplectic scalar. The simplest four such scalars are the following:

BB, = det D, (22a)
{B*,B,} =0, (22b)
B*B{B,,B,} =0, (22¢)
(1%, B*}{B,,B,} 0. (22d)

Of these, the middle two vauish identicully because of the antisymmetry of the
Poisson bracket and the symmetry of the Lorentz contraction. The first and the
fourth are the simplest nonvenishing scalars with the required invariance properties,
of these, the first is a homogeneous function of B* of degrece 2, and the fourth is a
homogeneous function of degree 4. Therefore the simplest homogeneous function
of degree 0 we can create with the required invariance propegties is obtained by
dividing the first scalar by the square root of the fourth scalar. Wo expect that the
Landau-Zener transition probakility T must be a function of this quantity.
Indeed, a more dctailed calculation gives the result in the form,

2 B¥ By, :
R \/-z(izu.w}w,,.m)‘ )

T = cxp(~
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This is the required generalizat.on of the Landau-Zener formula, and is our principal
result for this papei.

One might find this “der viation” somewhat unsatisfying, in that the invari-
ance principles alone do noi allow us to determiine the final functional form of the
transition probability, as displared in Eq. (23). But the more detailed calculution
just alluded to involves using the three transformation groups we have discussed to
transform the original coupled wave equation in Eq. {17) into a standard or normal
form, which is then solved by stai:dard analytic methods. The invariance properties
of these transformation groups me an important aspect of the normal form trans-
formations. Thus it is not mislending to emphasize the importance of symmetry
principles in discussing the derivation of Eq. (23).

The transtormation groups ‘ve have discussed here are also important in the
trecatment of Lendau-Zener transitions in many dimensions, including the case of
multidimensional Born-Oppeaheimer problems. We will report on such calculations
in the future.
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QUANTUM MECHANICS OF THE ELECTRIC CHARGE
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ABSTRACT

A siraple argument against the existence of magnetic monopoles is given. The ar-
gument is an important part of the quantum theory of the clectric charge developed
by the author.

“The same modification of the (Maxwell - Lorentz) throry which contains
¢ us o consequence, will also have the guantum structure of radiation as a eonse-
Albert Ewmstein
(Phys. Zert. 10 (14909) 192)

quens ¢

1. Introduction

‘i1 s paper is dedieated to Professor Yakir Ahawronov ou the oceasion of Lis
60 birtr ©y. The subject f the paper, quantumn mechanies of the clectric charge,
iv based «  the notion of phase, this clusive concept which has slways fascinated
Professor Aharonav,

The electrie charge (! and the phase S(r) of a (second quantized) charged
syste:  re canonically conjupated variables:

{50 oy (k=1 )

~ being the clementary < harge. Proof of this thecrem s givenin ', Here T will make
aly two rather obvious cotnments.
1) does explain quantization of the electric charge @ o nnits cqual to
the constant ¢
() - ne, on O, b k2

11 does nob, however explai ihe universality of the electrie charge e the fact
that c.p. the electie charge of the dlectron seene G he mathenatically equal to
the cleetrie charge of the proton, Indeed| sinee the - onstant ¢ in Eq.(1) is arbiteery,
we cannot exclude theoretically o situaiien e whohi o ey for one charged system
and ¢ 2 # 1 for another ystem.

2. The ph: ie S(r) c.on be uniquely do rimmed at the spatial infinity

o Eqg 1) s s arbiteaey cpatio ferapor. ot Lot ns imagine that o

N
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tends to the spatial infinity:
zz = (2°)? — (') - (22)? - (2%)? = — .

Mathematically-minded readers will object that we are not aliowed to fix, even in
the form of a limit, the argument of an operator-valued distribution. True. The
argument which follows is physical rather than mathematical, it constitutes a piece
of theoretical rather than mathematical physics.

At the spatial infinity there is caly one function which can possibly play the
role of phase. This function must be equal to

S(z) = —ez*Au(a), (2)

where e is a constant proportionality factor and A,(z) is the eclectromagnetic po-
tential. To see this one has to note that at the spatial infinity the electromagnetic
ficld is free,

*rF, =4nj, =0

and homogeneous of degree —2, Fl,(Ae) = A"2F,,(z) for cach A > 0 2. The field
is free because the electric current j,, being carried by massive particles, must be
confined to the future and past light cone. It must be homogeneous of degree
—2 because, as sceu e.g. in the static case, the charge generated monopole term
dominates dipole and higher terms.

Consider a classical electromagnetic field which is free and homogeneous of
degree —2; assumne that its potential is homogeneous of degree —1, which is natural.
Let us form two vectors,

1
]‘LU(I)IV and 56HUDUIUFPU(I)s

where r is the radius vector in the Lorentzian reference frame in which the homo-
geneity condition holds.

The two vectors given above determine the tensor F,, in a purely algebraic
way. Both these vectors are gradients of homogeneous of degree zero functions:

Fo(z)z¥ = 0.e(z), é(“"””;c,,Fw(r) = d*m(z).

e(z) and m(x) denote “electric” and “magnetic” parts respectively. e(z) can be
easily calculated:

Ful@)a® = [0,A,(x) - DA, (x)] 2" =
B [Au(@) 2] ~ 8L A () — 20, Au(z) = B, [ Au ()]

because

I, Au(r) = —Au{x)

from the Euler theorem on homogeneous functions,
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I maintain that m(z) must be a constant. This is an argument against the
existence of magnetic monopoles which, to the best of my knowledge, has never
been put forward before. (The argument given by Dr. Herdegen ? is different.)

To see this let us calculate the Lagrangian density

dz’dz'dz*dz®F,, F* (3)
for 8 homogeneous of degree —2 field F,,, using the spherical coordinates
z® = £%sinh ¢l
! = ¢%cosh¢! sin¢? cos €2,
z? = ¢%cosh ¢! sin €7 sin €2,
® = ¢%cosh ¢! cosE?,

0<&<o0, —o0<f <400, 0<E<r, 0 <2m

These coordinates cover in an obvious way the spatial infinity we are interested in.
Note that £° is a space-like coordinate while ¢! is a time-like coordinate. A simple
calculatior. gives

0
dzldzldz?dz®F,, F* = 2%\/§d51d62d€3 (—g"‘('?.e ke + ¢*0im Bkm) .

Here
dz# Jz¥
N A— 0y-2 L rm— ] =
Gik (E ) gl“ a{. a{kv ‘1k 1|2131

is the metric on the spatial infinity.

The Lagrangian density (3) is secn to be a difference of two identics' La-
grangian densities. Thus only one of them can have the correct sign i.e. the sign
which, upon quantization, would give a positive definite inner praduct. The part
with the right sign is called electric, the part with the wrong sign is called magnetic
and must be put equal to zero.

Now, the Gauss theorem says that the total charge Q is determined by the
electromagnetic field at the snatial infinity. In the quantum theory thie charge
operator () must have its canonically conjugated vartable S(z). Thns S(z) must
have a “tail” which does not vanish even at the spatial infinity. We have scen,
however, that there is exactly one function, namely z#A,(z), which can play the
role of the “tail”. Hence, there must exist a constant e such that at the spatial
infinity

S(z) = —ext A, (). (2)
The constant e in this equation is identical with the constant e in Eq.(1). Tuis iz a
hypothesis substantiated in the next section.

3. The proportionality factor in the phase

The two cquations
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[Q, S(:C)] = ie,

S(z) = —ex*Au(z),

constitute together a closed theory, the quantum mechanics of the electric charge.
It is important to understand correctly the epistemological staius of both equations.
The first eqquation is simply a theorem in the Q.E.D. which, bv continuity, is assumed
to hold also at the spatial infinity. The second equation is a hypothesis; one can
give several argumen’s supporting Eq.(2) but all those arguments do not amount
to a proof. Here are two simple arguments, to be added to those which I have given
elsewhere *,
Take the Coulomb field of the charge @ at rest:

Ap ==, Al=A;=A3=0.

Its phase, according to Eq.(2), is
Q

14
S(z) = —e=t = —eQ}-.
T T
During the eternity of time available at the spatial infinity,
—r<t<r,

the phase S(x) changes from Q) to —e). Take now the hydrogen atom with the
nuclear charge ¢ and the clectron charge e and assume that the radius of its circular
orbit tends to infinity. During the eternity of time available,

-r<t<r,
the electromagnetic phase of the electron wave function,
—e [Aua)ds
will change by the same amount:
—e/j %dt - 2eQ.
Thus the phase given by Ea.(2) changes as the true phase of the electron wave

function in an infinitely large hydrogen atom.

The phase of the Coulomb field ,
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may be compared with the phasc of the wave function of a stationary state, —FEt,
E being the encrgy of the stationary state. Thus §(z) looks like the phase of a
stationary state driven by the Coulomb energy eQ)/r. Again, this is not a proof but
a heuristic argument supporting Eq.(2).

Equations (1) and (2) together do allow to explain the universality of the
clectric charge. To be more precise, they allow to prove the foltywing theorem: the
total charge of the universe is always a multiple of a single conpstant. To apply this
to the electron or to the proton one must be able to cstimate the accuracy with
which, under specific observational circumstances, they can be considered as isolated
universes. The experitnental equality of clectron’s and proton’s charge shows that
this accuracy is indeed extremely high.
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Magnetic charges and local duality symmetry
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Abstract

The notion of magnetic charge is intimately linked with the global duality symmetry
exhibited by the extended Maxwell equations. It is easy to show that duality symretry
is meaningful only in 341 dimensional space-times, implying thereby that maguetic
monopoles as fundamental particles can be postulated only in 3+1 dimensions. It is
interesting to study the consequences of clevating the status of duality symmetry to »
local symmetry. This is achieved by intreducing a complex scalar field in a theory that
treats electric and magnetic charge on equal footing. The new theory is a generalization
of the extended Maxwell theory, which reduces to the usual Maxwell electrodynamics in
the low energy. The electric charge arises due to a spontancous symmetry breaking in the

scalar ficld scctor. A suitable choice of gauge makes the magnetic charge vanish.

95
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1. Introduction

Magnetic charge as a concept is very interesting because of several reasons. Firstly, they
make the structure of classical electrodynamics more symmetric. The second reason is that
existence of a single magnetic monopole in the universe can explain charge quantization (1],
Furthermore, 't Hooft [2] and Polyakov (3] showed that magnetic monopoles are generic in
grand unified theories. In section 2, we show that the duality symmetry is meaningful
only in 3+1 dimensional space-times, implying that the notion of magnetic charge is
linked with the dimensionality of space-time. Then, we gauge the duality symmetry by
invoking a complex scalar field. Finally, in section 3, we show that the ~esulting theory is a
generalization of standard electrodynamics, which reduces to the usual Maxwell equations
when there is a spontancous symmetry breaking in the scalar field sector. In our model,
although we start off with a theory in which electric and magnetic charge have the same
rank, we get the interesting result that magnetic charge can be gauged away.

2. Local duality symmetry

In 3 + 1 dimensional flat space-time, when magnetic monopoles are present,

electromaguetic theory is described in terms of extended Maxwell-Lorentz equations [4],

ouF = 12, )
o =Lt @

and,
B L aer e anbe] 22, ®

where F#¥ = %e“‘;ﬂF’"ﬂ is the dual of the electromagnetic field tensor F*¥  while j¥ and

j& are the 4d-current densities corresponding to eleciric and magnetic charges, respectively.
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It can be easily verified that under the following transformation,

Fuy — F,, = cos§F,, —sin6F,,, (4)

and,
ge — ¢. = cos 0g, — sinfq,, (5)
gm — @b, = 8infq, + cos O¢y,, (6)

extended Maxwell cquations (1) - (3) are invariant.

Is the duality rotation (4) - (6) meaningful for electrodynamics in space-times of arbitrary
dimensions ? To answer this, we consider elecirodynamics without magnetic charges in
D+1 dimensional flat space-time. The action corresponding to a particle of charge ¢

interacting with electromagnetic fields is given by,

A= —mc/\/q”,dzl‘dz” —%/A,.d::“ - -1—;; /F,...F""dn“x, (M

where u,v =0,1,2,....... ,D.

The equations of motion that follow from (7) are,

E',i = 4np, (8)
i 19E"  d4r .,
i3] e |
FY coE " (9
F“\uz ----- PD~I’.ul =0, (10)
where Ef = —F% and Fh#zbp-1 = LebisakosboboniF, o with i,j = 1,2,...,D

and p,v =0,1,2,..,D. In order to extend eqs (8) - (10) by adding magnetic monopoles,

one needs to modify eq (10) sothe  "#tka-mpr gy = 48 83ke£D-1 By thiy immediately
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brings an asymmetry between electric and magnetic charges, because the electric charge
current density is only a (1 + 1)-vector. There is symmetry only when EF#ika-pn-1
and FP1#2 are of same rank, implying D = 3. Therefore, we conclude that duality
transformation is a meaningful symmetry only when the dimensionality of space-time is
3 + 1, implying that only in such space-times electric and magnetic charges have similar

status.

Duality symmetry (4) - (6) is a U(1) symmetry. To see this, we dJdefine complex

electromagnetic field tensor, complex charge and current density, respectively, as

Guv =Fyv+iﬁpus (11)
Q =qe + i‘Inu (12)

and,
T =5k +ign, (13)

we can re-write the extended Maxwell equations (1) and (2) as,

4
8,G"" = T"J", (14)

and the generalized Lorentz force equation (3) as,

dpt 1 oups AT
TR ey (19)

Because of (4) - (6), the duality rotution now reads as,
G‘w -G, = CioGpuq (16)

[4

Q- Q =c"Q, (n




and,

J# o I = e gk, (18)

It is obvious that the equations (14) and (15) are invariant under the transformation
(16) - (18). So far we had been assuming that the transformation parameter ¢ is constant
in space-time, implying that the duality transformation is global. We wish, now, to extend
the hitherto global symmetry to & local one, by making # depend on space-time coordinutes.
This clearly requires modification of the field equations. More significantly, local duality
transformation makes the electromagnetic charge @ space-time dependent! This is an
unusual feature suggesting a different way of looking, at the concept of electromagnetic

charge. In the next paragraph we elaborate on this.

To begin with, we introduce a complex scalar fleld ¢(z) which under local duality

transformation changes as follows,

#(z) = ¢'(z) = ) p(z) . (19)

In this ncw picture, the electromagnetic charge ariscs due to the interaction between

the charged particle and the scalar field ¢ so that,

Q(x(r)) = ad(z(r)) , (20)

where w# (7} i3 the world line of the particle and a is a coupling constant that solely depends
on the particle, Thit way of viewing at the electromagnetic charge is reminiscent of the
origin of mass in clectroweak theories through Higgs field. In fact, in the next section we

will incorporate most of the features associated with the Higgs sector in the dynamies of

é.
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We now make use of the scalar field ¢ to define a gauge covariant derivative,

Dy =8y --vY, 21
where,
_ Oud(z)
= 4@ @)

From (21) and (22), it is easy to see that,
Dpcaﬂ — eil(t)-D“G .-ﬂ_ (23)

In (21) ¢ acts apparently like a gauge field, but (22) makes it obvious that this is a

pure gauge. And, hence, the definition (21) does not introduce any new gauge interaction.

Modifying (14) to,

D,G* = {11". (24)

we find that the equations of motion given by (15) and (24) are invariant under the local
duality transformation, and these form the generalized version of the extended Maxwell
equations. In the following section, we will derive these equations as well as the equations

of motion for the scalar field from an action.
3. Lagrangian formulation

In this section, we derive t! - equations of motion for fields and particles from an action.
We begin with few definitions. Let ap(z) be a complex 4-vector field that under duality

transformation behaves in the following way :

au(z) = d' () = *®ay(z). (25)
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The complex electromagnetic field tensor G, is related to a, in the following way,
Gy = (0, + \b;)av -G +¥y)a, (26)

where 1, is related to ¢ according te (22). However, not all the components of a, are
independent. This is because of the definition (11) for G, that requires the following
constraint to be satisfied,

i
Gu = ie,:ﬁcu,. (27)

The action for the electromagnetic field is given by,
1 »
A = —E/G",G‘“’d‘z . (28)

For particles, we label the world-lines y*(r) with latin indices ij,.. = 1,2,..., and
denote the world-line and the 4-velocity of the j™ particle as y#(r;) = y} and %’rg =
y;' . The portion of the total action relevant for the equations of motion corresponding to

particles is given by,

- 1 : .
A== me [ fanifigan = 5 Vo [# )+ colivdn L (29)
J i

where c.c. denotes the complex conjugate, and o is the coupling constant (sec (20))
rresponding to the j-th particle.

We now come to the scalar field ¢. Because of (19), the scalar field scctor has to be

invariant under local U(1) group suggesting the existence of a abelian gauge field x, that

interacts with ¢. The corresponding gauge covariant derivative then can be written as,

Vu=8u~igxu (30)
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where ¢ 1s the gauge conpling constant.

Under loea] duality transformation, the abelian gange field transfocms as,
/ 1 ]
\,.—0\“=\,.+;6,.0 . (31}

The action for the sealar field sector is taken to be,

. 1 v .
A, = /:I‘:[L, - mS,.u\:" B {32)
where,
1 * A . i aye
Lo= J(0,:0)(0"9) - et (33)
and,

Euu;"ap\u‘ v\ p ' (34)

It is well known that the ground state of this sector is deseribed by the following, solutious.

¢|-ur(-r) = 7]""“') \ (35)

and,

(\u)\lcr =0 . (36)

It iy evident from (28), (29) and (32) that Ay, A; and A4, are invariant under local
duality transformation respectively,  Variation of the total action with respeet to the

particle trajectory ¥} and the complex 4-vector field a* leads to the following equations of

Xll()ti()ll :
d”.’; "J » ny G.”y ‘I!Iv; -
dTl = '2(‘ [d’ (y] )G (yj) t ¢(y1) (yj )] 7(IT)_. (3‘)
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a[l(l,
I#G (‘E) 5 « ¢(1) 2 $ (1 y (t))v (38)
7 ” J

respectively.
In the low energy limit, (37) and (38) are equivalent to the usual Lorentz force equation
and ordinary Maxwell equations, respectively. This is because, in the vacuum configuration

(85), the gauge covariant derivative D, takes the form,
Dy =08, —ibp . (39)
By virtue of (19}, under a local duality transformation the phase ¥ transforms as,
$(x) - W(2) = (@) +0(z) (40)

Since the entire theory is invariant under local duality transformation, we are frec to choose
a gauge 8(z) = - ¥(z) so that ¥'(z) = 0 becaun - of (40). This immediately makes the

gauge covariant derivative (in the new gauge) reduce to ordinary partial d~rivative (see

(39),
D=0, . (40)

Furthermore, in this gauge the electromagnetic charge of the j-th particle is giver. by,
Q; =a;¢'(z) =a;n (41)

implying that the charges for all particles are constant and are real (corresponding to
electric charge alone). It is easy to see making use of (40) and (41) that (37) and (38)

reduce to,

doP 1 dr
ap; 1 L £
L RV PR L paul iR ’
ar, () ar, (42)

f
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i

B = f*clj:, (43) '

and, l
3, F* =0, (44)

st |

(g¢); = 5, (45) ;

and, '
=Yy B 52z - gy00). (46)

Equations (42) - (44) are the usual Maxwell-Lorentz equations in the absence of magnetic
monopoles. Thus, in the low energy region the electromagnetic sector of this theory is
identical to the conventional classical electrodynamics.

Before ending this section, we wish to draw attention to an additional local symmetry

of the theory. Consider the following transformation,

ay — a, = a, + 3, 0(¢"), (47)

where § is any complex differentiable function of ¢*. It can be easily shown that (47) le. ves
G,y invariant, and causes the action (29) pick up just boundary terms. Thus, equations

of motion are left invariant under the transformation (47).
4. Swmmary and discassion

Most symmetries in nature are local symmetries e.g. gauge symm ries in

ciecirodynamics and eleciro-weak theories, general covariance in Einstein's theory of

gravitation, etc. It is therefore interesting to study the consequences of a local duality
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symmetry. Gauging this symmetry requires invoking & complex scalar field ¢(z), that
exhibits spontaneous breaking of duality symmetry. In the low energy limit, there is a
gauge in which this theory automatically leads to conventional electrodynamics without
magnetic ch. - zes. However, in the high energy domain, one expects new predictions that

may be used to distinguish between the Maxwell electrodynamics and our model.
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We are gathered here to pay homage to the quantum phase. Out of classical
nothingness something quantum emerges.

One of the deepest mysteries in physics is the existence of two kinds of particles,
bosons and fermions. We now know that in 2 + 1 dimensional spacetime there are
also anyons, such that when two anyons are exchanged, the wave function acquires a
phase. In particular, when two semions are exchanged, the wave function changes by
a factor of i. 2+1 dimensional spacetime is not just less of a good thing compared to
3 + 1 dimensional spacetime. It is homotopically different: a new physical concept,
that of “going around”, appears. It niakes sense to say that a particle has gone
around another. This basic fact is what makes the notion of anyons and fractional
statistics possible.

Shortly after Wilczek, ande '»r, Leinaas and Myrheim, proposed the existence
of anyons, the question natural.  rose as to whether these hypothetical particles
can be incorporated into quantu.. ield theory. The answer is yes, and the concept
of gauge potential enters naturally. One simply couples a gauge potential to a
conserved current of interest, and have the dynamics of the gauge potential governed
by the Chern-Simons term.! In Maxwell dynamics, the spactime derivatives of the
gauge field are related to the current. In Chern-Simons dynamics, the gauge field is
directly related to the current. Life is simpler because one doesn’t have to solve any
partial differential equations. This is possible in 2+ 1 spactime. In any dimensions,
the current is of course a vector, the gauge field an antisymmetric tensor, but in
2+ 1 dimensions, an antisymmetric tensor is also a vector, thanks to the Levi-Civita
antisymmetric symbol.

This means that a charged particle would have a magnetic flux attached to it.
Here the terms electric charge and magnetic flux refer of course to the quantities
asgociated with the gauge potential we have introduced and not to the quantities
studied by Coulomb, Faraday, Oersted and their friends. Long ago, Aharonov and
Bohm told us that when a charged particle goes around a flux tube, the wave
function acquires a phase. Thus if we have particles carrying both charge and flux,
then when one such particle goes around another, the wave function acquires a
phase. Fractional statistics is just a slice of the Aharonov-Bohm effect. Thus, two
of the greatest names in physics meet two of the greatest names in mathematics.

In hindsight, this connection between Aharonov-Bohm and Chern-Simons ap-
pears so natural and so obvious that some workers in this field now think that it
was known since the beginning of time. In fact, this connection only became clear
in the fall and winter of 1983,

Over the last ten years, there have been many interesting applications using
this formalism. Herc I would like to talk about a recent discussion of tunnelling
effect in double layered Hall systems.?

In this formalism, in the quantum Hall effect electrons are coupled to gauge
poter “‘als obeying Chern-Simons dynamics. As explained above, the clectrons then
t. — magnetic flux. In a special state in the double-layered quantum Hall system
(techi.ically this corresponds to a certain mairix having a sero eigenvalue so that one
of the gauge potential is liberated from being governed by Chern-Simons dynamics),
the electrons in layer 2 act like flux tubes carrying flux — 27 to the clectrons in layer
1. Thus, an electron in layer 1 does not see the magnetic field imposed by the
experimentalist, but an effective magnetic field equal to the magnetic field imposed
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by the experime~talsit minus 27 times the local density of electrons in layer 2. Now
consider a long wavelength density wave such that as the density of electrons in layer
1 goes up the density of electrons in layer 2 goes down correspondingly. But then the
effective magnetic field seen by thr electrons in layer 1 also goes up. Thus, things can
be arranged to work out very ne tly. Even as the density of electrons in layer 1 goes
up and down, those electrons can be made to believe that they are still just filling
the first Landau level, not one too many, not one too few, Similarly, the electrons
in layer 2 are also living under the illusion that they are filling just the first Landau
level. Thus, as the wavelength of the density fluctuation goes to infinity, the energy
cost of the fluctuation goes to zero. This is the physics behind the appearance
of a gapless mode: the gaplessness is a consequence of an exquisitely balanced
cooperation between the electrons in layer 1 and layer 2. The same physics is in
fact responsible for anyon superfluidity. Technically, the gauge field liberated from
being governed by Chern-Simons dynamics is now happily massless and governed
by Maxwell dynamics.

The appearance of a gapless mode is consistent with symmetry considerations.
In the absence of tunnelling, there are two separate U(1) symmetries, corresponding
to the conservation of the sum and difference " the electron numbers in the layers.
In the special state described above, the U(1) .orresponding to the conservation of
the difference of the electron numbers in the two layers is spontancously broken and
thus we expect a Nambu-Goldstone gapless mode.

Tunnelling, that is, interlayer hopping, corresponds to the explicit breaking
of this U(1) symmetry and thus according to gencral considerations, the Nambu-
Goldstone boson becomes pseudo and acquires mass.

In the present formalism, the current describing the difference of the currents
in the two layers is written as a curl of a gauge potential. When an electron
tunnels from one layer to the otler, this current is no longer conserved. When ilie
divergence of the curl of a gauge potential does not vanish, we know that there is a
magnetic monopole lurking in the vicinity. The spacetime integral of the magnetic
flux coming out of the monopole is thec spacetime integral of the divergence of the
current, and hence the change in the difference of numbers of electrons in {he two
layers, equal to £2 in the tunnelling event. Thus, the monopole in our formalism
is quantized a la Dirac because electrons are discrete.

Dirac quantization of magnetic monopoles represents of course another mani-
festation of the Aharonov-Bohm effect. Dirac obtained magnetic quantization by
requiring that the Aharono-Bohm phase acquired by a particle going around his
string vanishes. Indeed, Coleman explains Dirac quantization by arguing in re-
verse, He describes a prankster trying to trick an experimentalist into believing
that he or she has found the fabled magnetic monopole. The prankster introduces
an arbitarily thin flux tube into the lab. The experimentalist can detect the flux
tube by letting a charged particle move around and measure the resulting Aharonov-
Bohm phase. It is precisely when the flux going through the tube is such that the
monopole has the Dirac magnetic charge that the flux tube becomes undetectable.
The experimentalist can then beenme very excited and proclaim the discovery of
the magnetic monopole.

Thus, we have a Euclidean 3-space filled with a plasma of ma; retic monopoles
and anti-monopoles. Wherever there is a monopole, an electron tunnels from layer
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1 to layer 2 at the corresponding point in spacetime. Whereever there is an anti-
monopole, an electron tunnels back from layer 2 to layer 1. Now we get to re-live
the golden days of quantum field theories. One of the most celebrated results of
the 1970’s was the realization by Polyakov that in the presence of a dilute plasma
of magnetic monopoles the photon acquires a mass.

This is completely consistent with our expectation from sysmmetry considera-
tions. To summarize, we have the following “life story” of a gauge quantum. When
it was governed by Chern-Simons dynamics, it was massive. After being liberated
into a life of Maxwell dynamics, it becomes massless. But then non-perturbative
tunnelling effects made it massive again, Technically, the plasma of monopoles is
a Coulomb gas, and a Coulomb gas can be represented by a sine-Gordon theory.
Expanding the cosine in the Lagrangian to quadratic order, one sees immediately
that the sirie-Gordon field is massive,

For his purposes Polyakov did not have to exploit the fact that the sine-Gordon
fleld is in fact an angular order parameter. But we know that there is very interesting
physics associated with angular order parameters! Incidentally, the order parameter
is angular precisely because the magnetic monopole is quantized by Dirac. Wen
and I are thus led to make the perhaps a priori rather surprising prediction that
when a DC voltage V is applied across a double-layered Hall system, for certain
special filling factors, there is an oscillating tunnelling current. In a word, there is
a superfluid lurking in the system and hence there is Josephson-like current. Note
however that the frequency is only half of the Josephson frequency because we don’t
have pairing here. We may entertain the hope that this effect will be experimentally
detectable in the near future.

I hop: to have conveyed the impression that the circle of theoretical ideas ap-
pearing in this subject are among the deepest in theoretical physics.

We encounter here quantum statistics, homotopic property of space, gauge po-
tential, Chern-Simons and Maxwell dynamics, Aharonov-Bohm phase, Dirac quan-
tization of magnetic monopole, quantum tunnelling, Natnbu-Goldstone bosons, co-
operative density and flux fluctuation and anyon superconductivity, discreteness of
the electron, Coulomb gas, angular order parameter, and Josephson ocsillation. In
the end, we can attribute all these strikingly beautiful notions to the fact that when
we move from classical physics te quantum physics the complex number mysteri-
ously appears on the scene.

With your indulgence, I will end by entertaining a speculation, in fact the same
speculation® I made here in South Carolina a few years ago at another conference
celebrating the Aharonov-Bohm effect. The appearance of statistics in quantum
physics is one of the deepest mysteries in physics and in some ways is responsible for
the current difficultics in particle theory. As Weisskopf discovered ages ago, fermions
are nice and bosons are nasty. The self energy cf a boson diverges quadratically.
It is partly to cure this problem that supersymmetry was invented, to solve the so-
called naturalness problem. We all know down what glorious paths supersymmetry
has taken particle physics: from supersymmetry to supergravity to superstrings
to supermathematics to superphysicists. Might it not be possible that quantum
statistics is a composite notion? In the end, there are only fermions {(or perhaps,
only bosons.) After all, we know that a bound state of a boson and a magnetic
monopole is a fermica (and vice versa.) There is an additional phase when two such
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bound states are interchanged. Indeed, it is possible to obtain reasonable quantum
numbers for the observed quarks and leptons.4 Some of the theoretical ideas I listed
above are so deep that they cught to have further consequences for particle physics
as well as for condensed matter physics.
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LIBERATING EXOTIC SLAVES

FRANK wirczex !
School of Natural Sciences, Institele for Advanced Study. Olden Lane
Princeton, New Jersey 08540, USA

ABSTRACT

The introduction of confined, “slave” field« is frequently useful as a formal device in
models of condensad matter physics; it becmes a conceptual necessity for describing
possible phases of inatter where the slaves are liberated. Here I discuss some aspects
of the fractional quantum {{all effect from this point of view, emphasizing analogicy
with phenomena in other areas of physics, particularly to the Meissner and Higgs
mechanisms, and to confinement-deconfinement trensitions, In this application, and
in some recent attempts to model the normal state of copper axide superconductors,
it is important to cmploy slave anyon fi=lds.

1 have long admirved Yakir Aharonov’s style in physics: to continue to puzzle
over that which is intrinsically strange, cven in domains where more jaded spirits
have lost, from mere familiarity, their sense of wonder. Thig child-like quality has led
him to make fundamental discoverics where few would anticipate that fundamental
discoveries could still be made, and- -as we all must acknowledge on this oceasion- it
ohwiously has kept him young!

In that spirit, I hope, [ would like to discuss with you today a personal per-
spective on the fascinating complex of new states of matler forming the “quantum
Hall complex,” which I have developed in response to some simple puzeles that have
bothered me for a long time. One of the puzales, as [ shall describe momentarily,
has to do with gauge invariance. The other is broader: is the fractional quantized
Hall effect as special and isolated as it seems at first sight, or can its vccurrence he
related to other decp ideas in theoretical physics? I have found my perspective quite
comforting and informative, and [ thiuk it is different at least in emphasis and some
significant details from what has appeared in the literature (including iy own waork.)
However, 1 must quickly add that it in no way allers with Laughlin’s hasic physical
picture of an incompressible quanium liquid, nor will it bhe used here to derive new
results that could not be found otherwise,'?

1. Critique of Laughlin’s Quantization Argument

1.1. The Argument
Shortly after the experimental discovery of the integer quantized Hall effect,

tResearch supported in part by DOE grant DE-FG02-90ER40542
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Laughlin* proposed un argument, based on gauge invariance, that explains why the
conductance is quintized. The argument proceeds from the physical hypothesis that
in the conditions where the quantized Hall effect is observed the electrons form an
incompressible fluid in the bulk, to show that the conductivity of the fluid (to be
defined, in a precise geometry, momentarily) must be an integer multiple of a certain
combination of fundamental constants, nz e?/h. With some important refinements
due to Halperin,® this argument remains the foundation of the theory of the effect.
I would like briefly to recall its essence,

Imagine an snnulus - - = ¢ ining electrons held at low temperature and subject
to a large perpendicular m: - fields, and such that the inner and outer edges are
connected by an ordinary wi.. .uid held at a voltage difference V. Suppose that we
have the conditions of the quantized Hall effect, that is, by hypothesis, that within
the bulk of the annulus there is a incompressible electron fluid. This means that
there is, for each value of the current circulating around the annulus, a unique bulk
state of minimum energy. It ¢:  bhe constructed, locally, from the unique, isolated
ground state by a Galilean trai..ormation.

Now let us supposc that there is a current I circulating around the annulus,
and consider the effect of switching on one quantum 4/e of flux in the void within
the annulus. At the end of this operation we have produced e gauge field, that
(for clectrons within the annulus) is gauge equivalent to zero, Thus the bulk state,
assumed unique, must return to its original form. The only change that can have
occurred, is that some electrons from oue edge might have been transferred to the
other edge, through the wire,

We can calculate the work done during this operation in two different ways.
On the one hand, we have transferred some charge ne through a voltage V; thuy
the work is neV. On the other hand while the flux is being increased there is an
azimuthal electric field, which does work on the circulating current. One easily
computes in this way that the work done is (h/c)/. Upon equating these, one finds
for the condnctance:

Vil = né*/h . (1)

Thus, this transverse conductance is quantized in terms of fundamental physical
cunstants.

A slight variant of this argument corresponds less well to a practical exper-
imental set-up, but is perhaps simpler conceptually and will be useful for my later
purposes. Consider the saume geometry and the same process of cranking on flux,
but now with uo transverse current and no voltage. As the flux is turned on, agaiu
some integer £ nuinber of electrons is transported. There was an azimuthal cleetric
field as the Hux was turned on, and thus, for a determinate transverse conductiv-
ity, a radinl current. The clectric field is proportional to the time rate of change of
the flux, so over the course of turning on one quantum of flux there is a definite
integrated radial cuxrent, or in other words a definite charge transfer, Equating this
charge transfer to ke, one finds the same quantization c ndition on the transverse
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conductivity as before,

1.2. Too Good to be Truef

The Laughlin quantization argument is so simple and beautiful, and so di-
rectly addresses the central phenomenon, that one cannot seriously doubt its es-
sential correctness. Unfortunately, it is too good. Shortly after it was proposed and
digested, experimentalists discovered states where the conductance is quantized,
but now as a definite fraction of e?/h rather than as an integer multiple. These
states occur when the density is close to (the sane) definite fraction of the density
corresponding to & full Landau level. The jargon here is that there is a plateau in
the resistivity around filling fraction v = p/(eB/hc); meaning that when the ratio
of density to magnetic field is close to this value the conductivity remains at the
quantized value ve?/h. The first discovered and most robust such state (as reflected
in the width of the associated plateau and the allowed range of impurities and tem-
peratures) occurs at v = 1/3. For simplicity and concreteness I shall mainly focus
the discussion on that state, although by now quantized Hall states at many other
fractions have beeu observed and there is a beautiful, extensive theory of them—in
fact several such theories.

Now we seem to be in the embarrassing position, with the preceding gauge
invariance arguments, of having proved too much. The conductance is not quantized
in integera times e?/k for incompressible bulk states, after all. What has happened?

1.8. The Miscroscopic Perspective

There is & successful microscopic theory of the fractional quantized Hall
effect. So before I get carried away with grandiose rhetoric about breaking and
amending gauge invariance, it behooves me to demonstrate how one understands
at a “mechanical” level how the general gauge invariance argument, which seems
80 clear-cut in leading to integer quantized conductance, develops the necessary
subtleties in the microscopic theory.

1.4. Lightning Review of Incompressible Hall States

As we have already seen in our discussion of the intcger effect, the quantized
conductance is a fairly direct manifestation of the existence of an incompressible
quantum fluid. That is, the electron fluid has a preferred density pinned to the value
of the external magnetic field. There must be an energy gap to deviations from this
preferred density: such deviations must be accommodated by localized inhomo-
geneities, rather than in arbitrarily long wavelength “sound waves” which—if they
existed--could have arbitrarily small energy. In the case of the integer quantized
Hall effect the preferred density simply corresponds to filling an integer number
of Laudau levels, and the gap is quite easy to understand. Indeed, to raise the
density here and lower it there we must excite a particle to the next Landau level
here, which costs a finite minimum amount of energy equal to the splitting between

Landau levels, that is not compensated by allowing a hole theret.

tThe lowest energy density fluctuations actually occur at a finite wavevector. These excitations,
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Laughlin himself® was quick not only to recognize the physical meaning of
the new observations, but also to prcpose a rationale for why specific special (non-
integer) filling fractions should be preferred. Let me very briefly recall the main
points, since I shall want to build on them.

First I need to remind you of some basic results about electrons in a strong
magnetic field (here, as throughout, I am assuming that the motion of the electrons
is confined to a plane.) The energy levels are highly degenerate Landau levels,
with & density of states 2x/I? per unit area per Landau level, where the magnetic
length [ is defined thiough 1? = eB/kc. The splitting between levels is i times the
cyclotron frequency, viz. AE = k(eB/mc). At low temperatures and for densities
small compared 271% it ought to be a good approximation to restrict attention
to states formed from single-particle states confined taken from the lowest Landau
level, unless there is some very special energetic advantage to admixing higher levels
(so as to minimize the interaction energy.) Within the lowest Landau level, the single
particle wave functions take a particularly attractive form if one employs the so-
called symmetric gauge, defined by the vector potentials A, = By/2, A, = —Bz/2.
With this gauge choice, the wave functions in the lowest Landau level take the form

¥ = f(z)e ibF (2)

where f(z) is an arbitrary analytic function of z = z + iy, subject to a reasonable
growth condition so that the wave function is normalizable, and aistances are mea-
sured in units of the magnetic length. A basis of orthogonal vectors in this Hilbert
space is provided by the functions with fi(z) = 2. I is the canonical angular mo-
mentum around the origin, which here is intrinsically non-negative, For reasonably
large {, the corresponding wave function is concentrated in a circular ring of radius
\ﬁ% and width v27 around the origin. It follows, by comparing the size of the region
where the wavefunction is large to the inverse density, or by direct calculation, that
the supports of these wave functions are highly overlapping.

Now let us consider an assembly of (non-interacting) electrons. Let us sup-
pose that they subject to a very small potential that draws them toward the origin,
but does not appreciably change the form of the wave functions (that is a second
order effect). Then the ground state will be composed out of the wave functions
with the smallest values of [, consistent with Fermi statistics. It will be the Slater
determinant

$h = det{zr'}eTt LIl 3)

where the row varizble r, the column variable ¢, and & all run from 1 to N, the
number of electrons. Given the spatial character of the wavefinctions as discussed

the so-called magnetorotons” can be regarded, intuitively, as bound states of quasiparticles and
quasiholes. They therefore bear a family resemblance excitons in semiconductors; however unlike
most excitons they do not easily cascade down and annihilate, because semiclassically the Coulomb
attraction between them—in the presence of the strong ambient magnetic field —causes a drift in
the perpendicuiar direction, and thus induces orbitai moiion. Of course the magnetorotons, unlike
the quasiholes and quasiparticles discussed below, carry no net charge.
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above, one easily realizes that ¥, for large values of N, represents a droplet of
uniform density 27 and radius V2N, with some fuzziness in an annulus of width
unity near the edge. For later reference let me also record the Vandermonde identity

N

det{z{™'} = n (zk — 21) (4)

k<lk =1

Now Laughlin's inspiration was to notice that the eube of this wave funetion
has remarkable qualities, that make it a particularly attractive trial wave function
for an assembly of interacting clectrons, The Gaussian factor is then not appropriate
for the lowest Landau level, but this can be compensated by a trivial redefinition
of the length unit, which we suppose done. Then clearly one has a wavefuncetion
again describing o uniform droplet centered at the origin, now with radius (/J2N/3,
density 27 /3 (that is, filling factor 1/3) and fuzziness in an anaulus of width 1/y/3
after the rescaling, The Laughlin wave function is particularly advantageous if the
cleetrons have repulsive short-range interactions, because it enforees a triple zero us
omne cleetron approaches another. A large number of mumnerieal studies have shown
that it is a very good representation of the grouad state wave function, for a variety
of repulsive iuteractions.

From a physical point of view, the . st remarkable thing about the Laughlin
wave functiou (and its varions generalizations - see below) s its rigidity, Tt picks out
a particular filling factor in the bulk. Deviations from this average density will have
to be accommodated by localized disturbances. As we shall make much more precise
below, the situation is analogous to what one has for type 11 superconductors, where
magnetic fields are not allowed in the bulk, but can penetrate only i loealized
vortices. Laughlin proposed a form for these disturbances, that compares very well
with numerical and experimental data, Tt is that a minimal quasibole localized
around zg is represented by maltiplying the wave function with a factor that pushes
clectrons away from z by adding one unit of angular momentui arovnd that point,

N
quasihole factor = [](zk -~ 20) . (h)
1

This gives a density deficit; theve is an analogous but slightly more complicated
construction for an enhancement, the quasiparticle. There is an important gedanken
production process for the quasibole: it is what you get by adiabatically switching
on one unit of magnetic Hux at zy. The quasiholes are rather exotie: they carry
fractional charge and frictional statistics. These propertics can be shown diveetly
from the microscopic theory.” I will forego that pleasure here, however the result
will be central to our later considerations,

1.5, The Gauge Argumnent, Reconsidered

With this background, let us return to the gauge invariance argument. The

rot R : . Y
second form of the arguwent is a little cosier to diseusy) so let’s consider it,
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There appears to be a technical awkwardness at the outset, in that we would
like to work in an annular geometry for the fluid and to include some mechanism for
taking electrons in one side and out the other, whereas the simple wave functions are
for a droplet geometry. Fortunately there is a way around this that is quite simple
arnd instructive for our purposes. We huve already mentioned that wave functions
with a high power z! times the usual exponential e~ arc concentrated in a small
ring of radius /2 and width +/27 around the origin Thus to put a hole in the droplet
of radius R, and produce an annulus of quantized Hall fluid, we shiould multiply the
wave function by a factor

Annulizing factor = Hz,(‘mm . (6)
k

Now you will not fail to notice that the annulizing factor is nothing but K?/2
quasiholes at the origin. A large number of quasiholes do literally make a (classical,
spatial) hole in the fluid! Also, since the quasiholes are the end result of adiabatic
insertion of a unit of magnetic lux—that’s how we (following, of course, Laughlin)
constructed them—we conclude that adiabatic insertion of flux drills a hole in the
droplet.

Although it is somewhat off the point for this talk, it is qmto interesting and
appropriate to the occasion to note that by redistributing fluz that lies entirely in the
empty void within the fluid annulus, one changes the shape of the annulus. Thus some
of the factors of [] z in the annulizing factor could be changed to [[(z — a). This.
is a truly remarkable example of an Aharonov-Bohm type effect, in my opinion.
That is, although one has “pure gauge” outside the flux tube, by moving the tube
around one produces definite physical cffects. (There is a pedestrian explanation
for this --the moving flux tube produces an electric field at distant points.) The
dynamics of motion within this manifold of quasi-degenerate states, produced by
moving flux in the void, is governed by the theory of edge cxcitations, Perhaps it
is even a practical proposition 1o produce these excitations by manipulating flux in
this way. (End of digression.)

So now we should be able to see, in lhe microscopic theory, how it can be
that the gauge invaciance argument becomes subtle, in such a way that inserting
a siugle unit k/e of flux docs not transport an integral rumber of clectrons—-vhile
iuserting three units docs.

It is really quite simple and beautiful. The point is that when the power in
the annulizing factor is a multiple o three, we can again write the wavefunction in
Vandermonde-Laughlin form. That is (stripoing away the Gaussian factors):

N N

H ZZL H (zk _ zl):i —

k=1 (k<i)k =1

N

H zf”(dct{zﬁ_l })3 =

k=1
(det{zsti1})? )
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where one has N x N determinants with row index r and column index ¢. Thus
to change L by one unit, to L + 1, we need only to change the wavefunction of
one electron, changing a z* to a z**N. In physical terms, this means removing an
electron from the inner edge and transporting it to the outer edge. (Note that the
minimum occupied level has been emptied, and the minimum available unoccupied
level has been filled.) That is the sort of operation an ordinary wire is happy to do.
The remainiug electrous in the annular drop can be entirely passive, and nced not
re-arrange their correlated wavefunctions.

It is quite a different story if you change the flux by one unit. That does
not correspond to transport of an electron from the inner edge to the outer cdge,
leaving the bulk intact. Indeed, as we have just seen, the latter operation in its
minimal form unambiguously corresponds to changing the flux by threc units. The
physical operation that corresponds to one flux unit, is creation of a quasihole-
quasiparticle pair at the inner edge, followed by transport of the quasiparticle to
the outer edge. This is not an opcration an ordinary wir. will do for you. There is
an amplitude for it to occur by the quasiparticle tunneling across the sample, but
since it requires a simultancous rearrangement of all the electrons this amplitude
will be exponentially small. In the thermodynamic limit of an infinite number of
clectrons, at zero temperature, it will not oceur at all. Then we are justified in saying
that gauge invariance has been spontaneously violated, in the only sense it ever is;
while the gauge transformation with three flux units connects one accessible state
to another, and represents a legitimate symmetry; but the transformation with a
single flux unit, although formally valid, is useless because it relates amplitudes for
processes in our world only to amplitudes for processes in another, inaccessible one.

2. Introducing, and Liberating, Confined Slaves

2.1. Analogies of'iQHE§ and Superconductivity

One cannot long reflect on the properties of the incompressible Hall states
without noticing mauy analogics between their properties and those of ordinary
superconductors. Let me mention a few of the most striking oncs:

¢ In the quanium Hall system, there is a vanishing longitudinal resistivity.
Thus the current flow is non-dissipative, as in a superconductor. Strictly speaking,
this is true only at zero temperature, However, this fact does not spoil the analogy:
we are dealing with a two-dimensional system, and in two dimensions the super-
conducting transition is also at zero temperature. Indeed, the reason is the same in
both cases: there is & finite energy gap to vortex production, which leads to finite
though exponentially small dissipation at any non-zero temperature.

¢ In both cases, one has an energy gap to charged excitations.

¢ In both examples, one has rigidity against an applicd magnetic field. In the
casge of superconductors this is of course the famous Meissuner effect, but it may scem

§I shall use this notation for the incompressible quantum Hall effect, which is a mouthful. The lower
case i is used here, because IQHE is already used to indicate the integer quantized Hall effect.
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to be & rather peculiar thing to say about iQHE states, since they occur immersed
in a magnetic field from the start. Nevertheless they exhibit a form of rigidity, in
that changes of the field away from a preferred value, pinned te the effective density,
are disfavored. Here by effective density I mean the nominal density as given by the
Hall coefficient, which is constant over a given plateau — in the analogy, we could
call this the superfluid density.

e In both cases, one has vortex-like objects. We have of course just seen this
in our discussion of the iQHE, where the quasiparticles are in some sense vortices,
and it is a famous fact for type II superconductors.

» In this vein, there is also the analogy that the non-dissipative state requires
that the vortices be pinned. The pinning is much easier in the iQHE case, hecause
the vortices are electrically charged and subject to a large magnetic field, so they
will be happy to make closed orbits on electric field equipotentials. (Nevertheless
some impurities must be present to make these equipotentials form closed lines, or
else there will be no plateau. Indeed for a translationally invariant system the Hall
constant must be equal te the carrier density, by Galilean invariance, and it cannot
“stick” at a preferred value as the density varies.) At finite density the quasiparticles
would presumably, given their large effective band mass and repulsive interactions,
form a Wigner crystal, analogous to the Abrikosov flux lattice.

On the other hand one has the apparent contrast, that the iQHE states but
not ordinary superconductors support exotic charge and statistics for the quasiparti-
cies. Also, as I discussed in the first part of this talk, the breaking of gauge invariance
is rather different in the two cases. For an ordinary superconductor, the periodicity
in the Aharonov-Bohr: type gedanken experiments we considered there would be
h/2e instead of the h/{¢/3) we encountered for the v = 1/3 state. The difference is
profound: whereas in tho first case one has a higher degree of flux-periodicity (that
is, a smaller flux quantum) than might of been anticipated, reflecting a pairing order
parameter, in the later casc one has a subharmonic periodicity.

2.2. Introducing Ezotic Slaves

The subharmonic periodicity in flux coexists, in the iQHE, with the cxis-
tence of fractional charge, and one would like to think that there is an organic
connection between them. Such a connection will arise, similarly to what one has
in superconductivity, if one requires that the integral

charge transport phase = 1§ Agdé
= &7, (8)

describiug the phase acquired by a particle of charge ¢ transported around a closed
loop enclosing flux @ to be unity, for a fractional charge ¢ = ¢/3. This single-
valuedness, in turn, will have to be imposed if there is condensation of a field with
charge e/3. The case for an organic connection thus becomes compelling. For the
cxistence of fractionally charged quasiparticles supplies, on the face of it, a natural
candidate for the desired condensate field: namely, of course, the field 1 that creates
the fractionally charged quasiparticles.




There is a difficulty, however. If ¥ is to condense one would like it to be
bosonic. But that desire appears to conflict with another: one would alse like to be
able to have possibility for an electron decay into three identical quasiparticles. For
the quasiparticles are supposed to be the important charged low-energy excitations,
and this is the minimal decay channel that allows an electron to communicate with
them, while couserving charge. Clearly, if the quasiparticles are bosons this decay is
not going to be possible. One needs particles with exotiz anyon quantum statistics,
in order that a state of three identical particles can have the quantum numbers of
a fermion. Furtherinore the microscopic theory teaches us that the quasiparticles
are in fact anyons, and an electron can in fact decay into three of them. (Another
possibility wou!d have been to have more than one kind of quasiparticle: for example,
one could reproduce the electron quantum numbers if there were in addition a
light neutral fe. mion excitation, so that an electron could decay into three identical
bosons and the neutral fermion. There may be 1QHE states with this kind of non-
minimal structure—a candidate v = 1/2 state of this kind has been described.!°
However for the more conventional iQHE states, a minimalist procedure works out
quite elegantly, as we shall see.)

So we seem to have arrived at o dilemma: on the one hand we want to have
a bosonic field to create the quasiparticles, so that the field can condense; but on
the other hand we want the guasiparticles to be anyons, so that they can reproduce
the electron’s fermion statistics, Fortunately, these requirements only appear to
be contradictory. Therretical work on quantum statistics in 241 dimensions has
shown that a bosonic ficld, properly couplied to a gauge field, can create anyons
of any tyge.® The way of this is done is called the Chern-Simons construction. It
works ws follows. One couples the field 3 using the minimal coupling procedure to
a ., uge field a that does 5ol have an ordinary Maxwell kinetic energy term, but
wste . A only a “Chern-Siimons” term

n

ALcs = 4—7;/ Paq foy . (9)

Now one can demonstrate, without much difficulty, that the quanta produced

+ vl have their quantum statistics altered, by the presence of the so-called

¢ rern-Simons gauge field a of which they are a source. Aud—at least in the point

pariicle limit, for which the concepts are clearly defined——this change in the statistics

of the quanta is the only effect of coupling in as. This construction is therefore «

valid, and the minimal, way of implementing statistical transmutation—that is, the
creation of quanta of one statistics by fields with another.

I originally called fields such as a “fictitious” gauge fields, The uewer termi-
nology is in many ways preferable, but the old terminology did have the advantage
of emphasi ng that the a do not introduce new local degrees of freedom. One can
in principle fix a gauge and svlve for the as in terms of . (The price for this is that
the resulting uction ie complicated and no longer maunifestly local.)

. Although I do not intend to pause {or a full demonstration here. it is es-
pecially approptiate on this occasion to note that the Aharonov-Bohm fect lies

—m -
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close to the heart of statistical transmutation. For the essence of the matter is that
one finds, on solving, the equations of motion for the gauge fields a, that the effect
of the Chern-Simons coupling is simply to turn each quantum created by ¢ into a
source of flux, as well as charge. Indced, on varying with respect to ay one finds the
equation

b= —5fa (10)

relating the particle number density to the Chern-Simons magnetic field. Note that
in two space dimensions one has flux points, as opposed to the familiar flux lines,
and onc can properly speak of flux associai-d to a point particle. When one such
particle circles around another the wave function ncquires, as Aharonov and Bohm
taught us, a phase proportional to the product of charge and flux, But such a phase
is operationally indistinguishable from the effect of quantum statistics! Aud that’s
why one can freely change the statistics of the quants created by a given field ¢ by
coupling ¥ o a Chern-Simons gauge field.

We can summarize these considerations succinctly as follows. As far as the
quantum nuinbers of charge and statistics are concerned, we can represent a field
capable of creating an clectron as

¢ ~ 1/)11’1[’1 (11)

where 9 is a bosonic field with clectric charge /3, properly coupled as well to u
Chern-Simous gauge field. With our conventions, the correct choice is simply n = 3
in Eq. (9).

It hia frequently been useful in condensed matter problems to introduce, as a
mathematical device, representations of electron fields as products of other “slave”
ficlds. Onc might, for example, represent the electron as a product of a neutral
fermion “spinon” field and a charged boson “holon” field, As long as there is a
constraint in place, forbidding the separate propagation of quanta of these fields,
this is just a mathematical device. One is then in o confined phase, analogous to the
confined phase for quarks in QCD. What we have done here is introduce a particular
exotic kind of slave field, with fractional charge and statistics. As long as its quanta
are kept confined--as might be implemented by a Z; gauge field coupling  doing
this is just a mathematical device. As loug as we consider only seales much larger
than the confinement scale, we will not have changed the physical content of the
theory. The procedure will be useful if added flexibility introduced by the slave
variables allows us to represent excitations or correlations that are awkward to
deseribe (i.e, non-local) in terms of the original variables,

2.5. iQHE as a Modified Meissner Effect: Liberating the Sluves

We introduced the slave field 3 with two purposes in mind: the straightfor-
ward ong, that after all there are quasiparticle states with exotic quantum nunbers
in the 1IQHE, so we should have fields to create them; and the deeper one, that we
would like to have a condensation, or vacuum expectation value, of charge /3 ficlds,
s0 ag to understand the subharmonic flux periodicity in the Laughlin argument.
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Can ) condense? At first hearing the idea might sound mad. After all ¥ is
a charged field, and the essence of the Meissner effect is that charged fields cannot
condense in the presence of a background magnetic field. They are, in the jargon,
frustrated. Since the 1QHE necessarily takes place in a large background magnetic
field, the proposed condensation sounds to be grossly anti-Meissner.

On deeper consideration, however, one discovers within this sceming difficulty
the central point of this circle of ideas. Let us recall how one understands the
Meisaner effect, in the language of condensation. In the free energy associated with
a churged condensing field 5 one has u gradient term

(Vo' = 18un — igAumf® (12)

involving the gauge covariant derivative. Now a constant magnetic field introduces
a vector potential A which grows with the distance, and whose effect, since it is
solenoidal, cannot he cancelled by the ordinary derivative term, which is longitudi-
nal. Thus to maintain a non-zero expectation value for the magnitude of 5 costs a
free encrgy density which grows with the distance, and this can never be favorable.

Now in the analogous considerations for our exotic slave field 5, we must
include not only the electromagnetic gauge field but alse the Chern-Simons field a.
And then we realize, that there is a possibility for A and e to cancel, thus allowing
for the possibility of a uniform condensute. This will occur when the part of A +a
that grows with the distance cancels, That, in turn, requires that the average flux
density associabed with this combination of fields vanishes. In view of Eq. (10), this
occurs when one has the relation

S =b = Ty = mp, (13)

3 n
where in the third equality we have taken into aceount the n = 3 demanded by quan-
tumn statistics, and that the quasiparticle density is three times the electron density.
Thus the cancellation tukes place precisely at filling fraction v = 1/3. Whereasy
the ordinary Meissner effeet for a supercouductor tends to exclude magnetic field,
the modificd Meissner cffect taking into account the statistical transmutation, ox-
cludes deviations of the magnetic field from a fixed multiple of the density (and,
of course, vice versa). Deviations from zero field in the superconductor, or from
the devirable density in the iQHE, are accommodated most cheaply by allowing
inhomogeneities—vortices in the first cuse, quasiparticles in the second. In fact the
quasiparticles are vortices too—but iu the Cheru-Simons field, not the clectromag:
netic field. Ouly by allowing such inhomogeneities can one preserve condensation
in bulk, which requires the integrated form of Eq. (13). That is the essence of the
modified Meissner cffect.

Another feature of the situation is that the condensation of ¥ into a Higgs
phase entails, as a consistency requirement, deconfinement of its quanta, Gne can-
not, after all, confine vacuum quantum numnbers! Thus the two purposes which
motivated us to introduce the confined slaves, namely on the one hand to have
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fields which described the exotic quasiparticles once they are liberated, and on the
other hand to have fields capable of condensation, are intimately related in their
realization.

£.4. Past and Puture

Well that concludes the main story I wanted to tell you today, and I think
it is a very nice story as far as it goes. I hope I have conveyed how the concepts
of fractional charge and statistics, the Chern-Simons construction of the latter,
and the modified Meissner effect ineluctably come together in a cohcrent account
encompassing both the iQHE and ordinary superconductivity. It does justice, I
belicve, to the ‘paradoxical’ nature of gauge symmetry in the fracticnal quantum
Hall states that onc encounters upon taking the Laughlin guantization argument
seriously, as we discussed above,

This story hus both a history and, [ hope, n future. I'd like briefly to comment
very briefly on these, although you should be warned that iu neither case do I speak
with authority.

Girvin!! stressed the analogies between superconductivity and the iQHE very
carly on, made pioneering attempts to construct a consistent, unfrustrated order pa-
ramecter, and recognized the importance of the statistical gauge field in this regard.
Girvin and MacDonald'? made an important connection to the microscopic theory.
The carly ideas were refined and extended in important ways by Zhang, Kivelson,
snd Hansson,'® snd by Read.!* There is an interesting discussion of this body of
work in Stone’s book.?

In previous work, as far as [ know, integrally charged condensates have been
emnphasized. For example in the approach of'? one couples the statistical gauge ficld
to the electron ficld to make it o “super-fermion™—though ereated by a bosonic
fieldY. 'This can be done with o Cheru-Simons coupling n = 1, With this value the
modified Meissmer argiunent gives the same relation between real magnetic field and
electron density as was discussed above.

In this talk T have discussed how one is naturally led to the fractional charge
condensate. Of course the existence of such a condensate docs not contradict the
existence of an clectron condensate, but postulates additional strueture, I think
there are significant advantages to this point of view. For example the quantiza-
tion of n in integers is required, for consistency, when one considers carefully the
quantization of the Chern-Simons theory on topologically non-trivial surfaces. The
appearance of integers multiplying the Chern-Simons term, and more generally (for

T Ihe notion of “super-fermions,” that is of particles for which the wave function not only changes
sign—that is, accumulates phase = -but accunulates phase 3w, say, may appear incoherent at first
sight. After ull, there is no denying that ¢’ = ¢%* Howcver, it does have a concrete mcaning
operating umong states within the lowest Landau level. For in that context the relative angular
momentum must be positive, and the effect of boosting the angular momentum by two units is to

Without the positivity restriction on angular momenta that operates in the lowest Laudau level the
allowed spectrum would not be altered, and the notion of “super-fermion” would be quite dubious.
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iQHE staics at higher levels in the hierarchy) matrices of integers describing several
coupled Chern-Simons theories, plays a crucial role in Wen'’s theory of edge states,!®
Thus both for understanding the accuracy of the quantization in the FQHE in a
fundmnental way, and for connecting ideas about the bulk state to the successful
theory of edge states, 1t is important to have iutegers.

Having identified something like an order parameter, one might like to con-
tinue the anulogy with superconductivity by cousidering inhomogencous situations,
responsc to external ficlds, and so forth, by solving classical cquations using an cffec-
tive Lagrangian, in the style of Landau and Ginzburg. In atteiapting this, however,
one must recognize that the fields involved in such an effective Lugrangian cannot
be regarded as normal local 24-1 dimnensional fields, beeause they should ouly create
and destroy quanti in the lowest Landau level (which mukes them effectively 141
dimensional).

As a concrete example, one would like to use an cffective Lagrangian to de-
scribe the motion of quasiparticles in response to slowly varying external clectric
aud magnetic ficlds, or their scattering at small momenta, Indeed these maost ba-
sic processes involving quasiparticles are perhaps the most fundanental observable
processes governed by their exotic charge and statistics, so one would like to have
an explicit desceription of them. Even in the simplest case of the integer quantized
Hall effect, where the guasiparticles are the electrons themselves, it would scem that
u more direct approach to caleulating charged particle drifts in the lowest Landau
level is uppropriate, and this Lias quite a different, flavor from solving simple clissieal
field equations. This subject needs more work. '

2.5, Coda: Question of Statistics in Spin-Charge Separation

There are several indications that the normal state of the Cu() high temper-
ature supereonductory, for the dopings at which they exhibit superconductivity, is
an anomalons metal. Perhaps the most striking anomaly is the linear dependence of
resistivity on temperature, down to guite low temperatures. This is different from
what is expected for a Feri liquid, even after allowing for various possible conpli-
cations. ! Ou the other hand there definitely are indications that o Fermi surface
exists, at least in the senge thal there is a significant singnlarity in the density of
states (maginary part of the cdectron Green function) at n surface in momentumn
space. However, the size of the Ferini surface appears in some elasses of experiments,
particularly photocmission, to be roughly normal; whereas Iall effeet measvrements,
if interpreted as reflecting Fermi surfice paramceters, give a very different picture.
Although these experiments are not entirely straightforward to interpret (hecause
the Fermi liguid theory fails to describe their temperature dependence correctly,
the foundations of the analysis are insceure), ou the face of it they seem to iudicate
 stall Fermi surface for small doping, with positive (Lole-like) carriers. ‘Thus they
scem to reflect not the cutive clectron density, but rather its deviation from half
filling,.

Motivated by these and other experimental results, which appear to require
a 2-component model; and by expervience with 141 dimensional models, Auderson
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and aothers have proposed that the anomalous state is characterized by spin-charge
separation, that is the exietence of separate spin and charge degrees of freedom-- -
spinons and holons. Electrons are supposed to decompose into these more basic
objects. This is known to happen in 141 dimensions, even for very weak coupling. '
In 2+1 dimensions the situation is much less cleur. The infrared singularitics that
drive 141 dimensional metals, cven for small coupling, to qualitatively different
behaviors arc substantially weaker in 24-1 dimensions.

Nevertheless one is wmotivated by the phenomenology, by the 141 dimen-
sional modcls, and by the “existence proof” provided by the foregoing analysis of
the iIQHE, to consider the possibility that in the CuO materials the transition to
the norinal state involves a liberation of exotic slaves. If there are states of mat-
ter in 2-+1 dimensions wherein electrons do separate into spinons and holons, the
gquestion arises what is the statistics of these particles. The most obvious assign-
went is boson statisties for one, fermion statistics for the other.?® On closer exam-
ination however this assignment appears to lead to severe difficulties,?® ‘The Bose
condensation temperature tends to be very high, and if it occurred it would lead to
striking effeets, none of which are observed. My colleagues and 1 suggest instead®
Lo consider the possibility that both species are half-fermions. This avoids the Bose
condensation problem. Recent work on gauge theories?? inspired Ly the Halperin.
Lee-Read®® theory of the compressible Hall states near v = 1/2 suggests another
udvantage of assigning fractionnl statistics to the spinons and helons, namely that
they lead to a pattern of anomalous behaviors at least qualitatively suggestive of
CuO phenomenology, There is 2 nominal Ferini surface, but uy one approaches the
Fernii momentum there is a severe renormalization of the effective mass, so that the
singularities and tetnperature dependenees are not of the form predicted by Fermi
liquid theory.

A detailed account of this work will be appearing shortly. I wanted to mention
it here as it is 50 closely allied to the idens discussed in the body of the talk, aud
perlips gaios sowe credibility from the association,
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Abstract?

Evidence is presented for the existence of persistent currents in
normal metals. It is shown that even in the mesoscopic domain, quantum
effects may be very important, Investigations of the magnetic properties of
metals in this domain have shown Ahavonov-Bohm effects that supgest that
persistence currents should exist in normal metals. It is shown that
experimental verificzion of the existence or non-existence of these currents is
very difficlt and not resolved at this time.

When you're in the laboratory trying to measure a quantum effect,
you are often faced with many problems that theory may not have
addressed. One interesting property is the possibility of persistent currents
in normal metals. Since the technology is extremely advanced, no one can
do these experiments without help from a large number of people, 1 wish to
thank all those who have contributed to the efforts that made the results
discussed here possible.

Theorists must understand thut experimentalists can be very helpful.
Just tell the experimentalisis, in a way that we can understand, what it is
you'd like to know. For examnple, congider a condensed matier system of
some really macrogcopie size and ask how to calculate vhe magnetism and
the transport properties. We all know from classical physics how to do that.
Then take the thermodynamic limit, do ensemble averaging over all
possible scatiering sites because, there are many of them there, and
calculate un average magnetization or susceptibility or elecirical resistivity
for that material. But you know if you were to ¢xamine some small sub-
section of that sample, say a cube of atoms three on a side, twenty-seven
atoms lotal, and ask what the magnetization or the trangport properties are
of that, your classical approach should break down simply because the
electron's n wave, not a billiard ball. You' would have to invoke quantum
mechanics. Now most experiments, until recently, could not get down to
that kind of size scale.

The main discovery about six or seven years ago is that you don't have

to go to the very small scale to see the quantum effects. There is another
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intermediate range, called the mesoscopic range by some, where the long
range space coherence and the wave function provides you with ample
quantum mechanical sensitivity to study. There is a correlated behavior
over a length scale associated with the ‘ystem. This range, called the space
coherence length, is the distance an . lectron can move in a condensed
inatter system without losing the phase of its wave function. That distance,
surprisingly, can be as long as twenty microns At IBM we arc producing
circuits of the future that are at the tenth micron level. They're going to be
in your computers someday soon, So we're talking about systems that show
extreme quantum effects, when cooled to low enough temperature, that are
hundreds of times larger than the micro-circuits that we're building today.
This i8 very exciting. Yet, they contain billions and billions of electrons, so
we're really not dealing with microscopic systems.

Three years ago I reported on the state of research at that time. What
was reported then is now an old story. At that time we used the then
current state-of-the-art lithography to build a metallic system. We made a
lithographic ring of gold about 1.86 microns in diameter, and did a four-
terminal electrical resistance measurement. This ring was gold evaporated
out of a relatively crummy, non-state of the art evaporator, using state of
art lithography at that time.

When that system was cooled to low temperatures the behavior
surprised many people in the community. What was discovered was that
the electrical resistance that you measure as a function of the magnetic field
oscillated periodically as the field was varied over 0.1 to 0.2 Tesla. That was
a clear manifestation in some minds of an Aharonov-Bohm effect, and
indeed that seems to be the most reasonable explanation.

There is another surprising feature that shows up if we use a half
ring. If you loock on a larger magnetic ficld scale, there additional
fluctuations, The oscillations previously discussed occurred as the field was
changed over a fraction of a Tesla. The new oscillations in the electrical
resistance become apparent in the range of 0 to 8 T. These oscillations are
weak and just visible on top of the previous oscillations if we use a complete
ring. If we break the ring aud only study one-half, we only sce the new
fluctuation effects.

Standard solid state physics textbooks say the clectrical resistance of
a piece of gold as the function of magnetic field is a smooth curve. That is
what you should be teaching your graduate students. For years people
thought these escillations wag a junk effect; however, when the theorist and
experimentalist finally lcarned to talk to each other, what we finally
understood was this also an Aharonov-Bohm effect. We can see that this is
an Aharonov-Bohm effect by asking what would haprpen in a disordered
syslem, -
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There are an infinite number of paths that the electron might take,
but if we look at the intersection of any two paths that form a closed loop,
and apply a magnetic field, the local probability of finding the electron at
the intersection is a fluctuating function of magnetic field. This is caused by
the interference phenomena associated with flux through that path.
Obviously there are paths enclosing a wide variety of areas going from very
small to essentially the sample size. So what you see is what many theorists
have called an electron inferrogram. The conductance as a function of
magnetic field fluctuates periodically. It's very reproducible, you can make
measurements a month later and get the same pattern.

If you make another identical sample, you'll have a completely
different pattern. The only universal thing is the amplitude. The amplitude
is on the order of the electric field squared over the magnetic filed. In these
experiments, the sample size has to be of the order or smaller than this
characteristic phase coherence. The nice thing about these universal
conductance fluctuations is we can measure the phase cohercnce length
relatively accurately. Using a bit of theory, take an auto correlation
function, then the half width at half-maximum is a measure of the phase
coherence length. For a typical sample it is about 1.3 microns.

This is still an old story. We've been changing our experiments and
agking new questions. What about the magnetic properties of the small
system? I've always had a very small problem, which is that in our
textbocks we teach that the magnetism of metallic systems is a combination
of polyparamagnetism, which describes the coupling of electron spin to the
applied magnetic field, and Landau diamagnetism, which describes the
coupling of the orbital motion to a magnetic field, In this regime all the
electrons are phase coherent, also what does the Landau diamagnetism do
as a function of field in a phase coherent regime? Is it a number, or is it a
fluctuating quantity that might have some Aharonov-Bohm effect? That's a
question which we spent quite a lot of time trying to answer. A slightly
different version of that is if you build a ring, then you're supposed to get
persistent currents.

The basic idea is that there will be a current started as you put on &
gauge flux to the center of a metallic ring. The characteristic current
circulating around that ring will be an oscillatory function of magnetic field,
or flux threading the ring. The period of oscillation will be Planck’s constant
divided by the electric charge (#/e.

The theory is simple. Write the Hamiltonian for that system and
consider the energy of each electron in each level to calculate the current
carried by each of those states. This is just the derivative of the energy with
respect to the flux. The magnitude of the current is the electric charge times
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the velocity in that state divided by the path. In an ordinary condensed
matter system, the electrons occupy different levels. So if we have 1012 or
1013 the electrons, as we add them, are going to go into different
Eigenstates. The very last electron added goes into the Fermi energy.

In a closed system of an annulus, all of the extensive properties are
going to be highly periodic in the gauge flux. In particular, the energy levels
are going to show a 2x periodicity for each flux level, the energy of the first
electron will be an oscillatory function as will the energy of the next
electron. In principle, the total energy oscillates periodically in flux, but this
oscillation changes slope for each electron that you add. To first order, each
new electron cancels the previous electron so as you work your way up this
ladder, almost every contribution to the current is canceled by the one below
it until you get to the Fermi energy.

In principle the persistent current you will get in this one-dimensional
system is only eVy/¢ with eV¢ being the Fermi velocity corresponding to the
last electron you added, and therefore, its sign,. and 7 is the coherence
length. The response in a magnetic field can either be positive or negative.
It only depends upon whether there is an odd number of electrons or an
even number of electrons in your sample.

This is an Aharonov-Bohm effect. To this audience, that's probably not
surprising, but most audiences believe that this is just Landau
diamagnetism. What does this have to do with the Aharonov-Bohm effect?
The Aharonov-Bohm effect is in the transport measurement. You send an
electron in at some energy, it has two ways to gel around the system, a
displacement advances the phasc along one path differently than along
another path. When you re-combine the waves, you can get a phase
difference, which gives you pattern of constructive and destructive energy.

You can analyze it another way. Break a ring into two parts. In part 1,
the eleciron takes path. we denote by (1). Along this path the phase change
is Q1= ,fl Aedl. Along J&he other part we indicate the path by (2) and the
phase change is 7 = j2 Aedl. To get the phase difference, subtract those
two phases. One of the paths is oppositely directed, so we must add the
phases.

To show there is a persistent current, draw an imaginary dividing
line. Start an electron at that line and say it's going to go all the way
around the ring, but divide it up into two separate paths, and then if you
sum that up in terms of an Aharonov-Bohm effect, you'll see that the total
change in phase is (o1 + 2. Take a piece of gold that can be broken open and
measure its electrical resistance. Now put it in a loop and it carries a
persistent current. A persistent current to the age of the universe, not for a
nano-second or a pico-second.

e e e e e ot e s - S - -
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In the real world, cne-dimensional rings cannot be built, at I ast not
that have low disorder. We really have a multi-dimensional systen. where
the line is 300-1,000 Angstroms thick. That is, lines are many electrons
thick and many electruns wide. You might expect that there would be a
multi-channel effect that would enhance the current. In the systems we
aave built, the electron scatters many times as it goes around the ring. It
may scatter hundreds and hundreds of time before making one complete
revolution, In that case the transit time for an electron to move around is
basically a diffusive timie as opposed to a ballistic time. The current is, in
principle, thought to actually decrease because of the slow transit; whereas,
in the ballistic case, if it doesn't scatter at all, the total current should be
enhanced by the number of independent channels that you're carrying. So,
in a real system you might expect some very large currents.

Experimentalists have learned many thinge in the last twelve yeare in
condensed matter physics about the space coherence lengths. What should
be obvious, but may not be to some, is that the ch: racteristic distance which
the electron moves without losing the phase inforraation in its wave
function can be shorted * - the electron-phonon interaction, the electron-
electron interactions, ar > interaction of the electron with any magnetic
impurities. Another criteria which all experimentalists have to be aware of
is taat there is a broadening of the energy of the wave packet due to a
thermal diffusion process. We call this a dephasing length. This dephasing
is due to a finite temperature effact. So you have to have this characteristic
dephasing length along the perumeter of your ring. All this translates into
typical ring sizes that. are going to be on ihe order of 1 — 10 microns, and
temperatures which must be milli-Kelvin.

We need to use a state of the art, or very close to state of the art,
SQUID detection system., SQUIDs are just very sensitive detectors of
magnetic field. They consist of a superconducting circuit which surrounds
the ring under study. We apply an external magnetic flux, and if there's a
signal, the signal will be coupled directly into the SQUID. Skipping the
engineering details, you mak: this circuit such that it's a gradiometer
where you wind two identicai coiis but in opposition to each other. Then if
you apply a uniforin field, withnut a sample in your SQUID coils, you'll get
no signal coupled in: your SQUID. Now the kind of sensitivity that I'll be
talking about today, refers to the input terminals of the DC SQUID. We are
able to resolve changes in flux to a part in 107 - 108. of a superconduciing
flux quantum. One-tenth to one-hundredth of a micro-flux quantum at low
temperatures, with good signal averaging, is easily obtainable with these
state of the art systems. Using modern lithography, we can make rings
whose dimensiong are on the order of 1-5 pm.
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If we put a gold ring inside a niobium pick-up quill that's part of a
SQUID circuit, how big should the persistent current be? Again vce were
surprised. This is another one of the thing » that should make you
extremely doubtful about the existence of persistent current. If the
calculation is done at temperature = 0 K using all the simple theory that's
been out there for about five years, theory predicts a persistent current of
2.2 x 10~7 A/f where £ is the coherenc~ length in microns. In a one micron
perimeter ring, the size of the persistent current should be © x 10—7 A.

A well equipped laboratory can routinely measure 10-15 A in
transport experiments. This can easily be done with room temperature
electronics and a little signal averaging. So it would seem that we can easily
measure the persistent current in the ring. It is eight orders of magnitude
bigger than what I normally measure. It turns out not be so easy after all;
this is not an easy experiment. To see this, calculate the coupling of that
ring to the detection system. The mutual inductance of that ring is about a
pH. Now 10-7 A times a mutual inductance of 1 pH gives about 1019 Volt-
sec. That's about 104 to 105 of a superconducting flux. It's a small signal,
even though the magnitude of the current is large.

What we actually do in the experiments is build these fantastic,
highly versatile SQUID detectors. We then put many different samples, at
many different locations in these detectors. For example, we used a gold
ring that's about 1.4 by 2.6 microns, square as opposed to round. Cool these
samples to low temperatures and collect the data. Ideally, if there was no
signal coupled in, the measured magnetization as a function of applied field
would be a flat line since the magnetometer is working in a balanced mode.
Lithography v wsi p2ooct, so there is some imbalance which can be
oot raentally Lonioved from the data. The data we obtain is a fairly
straight-looking pattern, but the second order of correction looks like a
cubic. That's just the response of the environment. There is no signal on top
of that.

Simultaneously, while sweeping the DC field, we use AC techniques.
As those of you who are experimentalists will know, you can get much
better signal to noise by using phase sensitive detection. What we do is
apply an AC Field and detect the AC response. We can use this to measure
tine fundamental response, or the next harmonic. Applying the AC field
gives the primary, the second harmonic and the third harmonic response.
That' is done simultaneously in this experiment, so we can get three of
them at one time. '

Do a little bit of signal averaging and background subtraction to get
the fundamental signal. Subtract out a quadratic and what's left over is the
reduced data. Fourier transform that to get a signal that is exactly like you
would expect: an oscillatory signal based on the inside and outside
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diameters of that ring, This happens to be true for all our samples. If there
is an h/2e signal, which I call in these experiments a higher order harmonic,
it should be down by roughly l/exp in these experiments. It is at least that
low.

There's another bump in the reduced data that everybody points to.
Anybody familiar with digital signal processing, that is a data on a finite
interval, knows that once you subtract out a quadratic and a linear and a
constant, you force the power in the Fourier transform to go to zero because
you've subtracted it out., Then when you ask your computer to fit Fourter
components to this, false bumps show up. This is really the tail of a signal
from a very high frequency, most of whose power we have subtracted out.
This is the result of data on a finite interval. It's instrumental; it has
nothing to do with physics. If I could take field data over a bigger field scale,
I would push this intensity towards zero.

If you then take a look at the second harmonic, by subtracting out
only the linear part, this is the kind of data you get. That is about as good
as one can get for oscillatory work. To get a better signal, use a bhigger ring,
but the signal dies quickly as the temperature increases so there is not
much to study.

To try and prove there is a persistent current, we first study the ring
and collect our data. We then warm the ring and etch the gold out of the
ring, That is we just get rid of the gold, leaving everything else untouched.
Re-cool the system and look at the size of the signal in the region where we
found the h/e signal as a function of temperature. So we have the data for
an empty magnetometer and the data for a filled magnetometer, There is a
difference, so it looks as if the signal is real.

To get a good signal to ioise, over a sweep from plus to minus thirty
gauss, takes twelve to twenty-four hours. The experiment can be stopped at
any point, held and it doesn't decay. The signal is persistent in that sense.
We have an oscillatory magnetization whose average value, which I detect
over long time scales, s unchanging. This hasn't been done for the age of
the universe, nor for 107 seconds, but over relatively long laboratory time
scales, it is constant,.

rists want to compare thisg to the theoretical result. Theory
would say that if you assume some simple exponential dependence on the
basis of the thermal diffusion smearing the wave packet, it should be
possible to account for the new ballistic system, the diffusive system and
calculate the amplitude of the A/e signal.

The experiments at 5 milli-Kelvin have a signal that's about two
orders of magnitude larger than theory. We're not measuring 10-7A but we
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are in the 10—8A regime. We find that the diffusive correction is not there.
We can also find the sign of the effect; that is, determine if the response is
paramagnetic or diamagnetic. A lot of people, still believe that this is a
diamagnetic phenomena, they would expect the signal to be diamagnetic.
Theory says 50% of the sample should be diamagnetic and 50% should be
paramagnetic in the response to near zero field. Our two successful
experiments 8o far indicate that the effect is paramagnetic. Recently,
theorists have been working on this, and believe this discrepancy is due to
an electron-electron interaction. I'm not going to go into that. However,
electron-electron interaction does not seem to be a likcly explanation since
conventional theory does not allow any mechanism by which you can
explain discrepancies which are a factor of 100.

Before we had published our work, Laurent Levy, Kerry Dolan
Dunsmere, and Ellen Gushiah published a paper in which they too were
interested in persistent currents. They had built what I call a hammer type
sample, it's ten million copper rings. Each ring is about 0.5 microns by 0.5
microns on a side, There are 10 million of them, so if you can't measure one
with one ring, maybe you can measure 10 million, Well, I set you up to
believe that if there's a signal in this, it's going to be in an Aharonov-Bohm
effect, h/e. And that's what every theorist thought. But when they published
their data, they got a different signal.

Both the second and the third harmonic response functions ought to
be oscillatory in the magnetic field. The phase relation here is zero, so it
would just be 0° different. The second harmonic should be anti-symmetric
about zero, so it should he zero at zero ficld. The third harmonic and the
first harmonic should be maximum or minimum at zero field. When they
anal, zed their data and extrapolated to T= 0, they obtained an unexpected
result. The signal was periodic, not an h/e, but in k/2e. The size of their
current corresponde:! to 3.6 x 10-10A per ring.

Is that an Aharonov-Bohm effect? Well, I don't know the answer to
that. There's been a lot of words said that this h/2e effect is just a higher
ord: r effect. In fact, I've been worried about some of the interpretations.
What we've been doing lately is studying arrays of gold rings, but now we've
developed a better detection system, I don't need 10 million, only an array
of 200. Using lithography, the experimentalists can actually tailor the
detection system so that each pick-up quiil fits around one ring. Make the
pick-up quills as small as needed, or the rings as big as needed, and use
lithography to determine the optimum detection configuration. The beauty
of our experiments is that we simultaneously can apply a magnetic field to
both sides of the sample. The other side doesn't have any rings in it, so you
can get rather uniform fields over the sample, Then vary the magnetic field
continuously. We find a peak right in the vicinity cf A/2¢e and some
structure in the vicinity of h/e. However, the h/2¢ dominates,
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In going from one ring to 200, there is a phenomena that's occurring,
something is bigger. In our original single ring experiments, we could
determine the h/2e effect was about 1/exp down from the h/e effect. But, it's
only true that on average. Every ring has a different number of electrons, so
the h/e effect is only going to grow like the square root of the number of
sample. If there's something more correlated, like an hA/2e¢ effect, the
correlated signal is going to grow like the number of sumples, For 200
samples you expect the h/e signal be about 10 times larger, and h/2e signal
to be 200 times larger than that for a single ring. Those are the
experimental results, roughly. We find the &/e signal is smaller than theory,
and the h/2e signal is about what is expected.

Although Levy's experiment was originally published as in perfect
agreement with theory, it's now generally recognized that signal that he
was measuring is about one to two orders of magnitude larger than they
should be measuring based on the current theory. Our experiments also
give the 1-2 order of magnitude difference. So we have two independent
experiments both giving something much larger than they should.

Recently A. Benoit and his colleagues at CNRS-Grenoble have been
studying the persistent current in a single gallium arsenide ring. This is a
beautiful experiment (unpublished at the time of this lecture). This is where
the foundations of quantum mechanics is going to really learn something.
He, first of all, builds a ring with four terminals out of gallium arsenide in
the ballistic regime, so the electron has no scattering. Then he can measure
the h/e oscillations and Fourier transforms them to get the power spectrum.
The electrical resistance oscillates periodically in both an h/e and about
1/exp down, on h/2¢ component.

This is in the transport, no new news here. But now this is gallium
arsenide, so he can put gates on top of it and deplete the electrons from the
leads,. He then isolates it. and builds around the same ring a DC SQUID
system, and now measures the magnetization of that isolated ring. Using
the DC SQUID he finds a current going around in the isolated ring. He secs
an h/e signal. The signal to noise is weak, but none of these experiments
have good signal to noise. The beauty of this experiment is that now you can
couple the ring to the outside world by taking the voltage off the gates.
When that is done, this signal goes away. I think there's something
significant there for the foundations of quantum mechanics and the whole
idea of measurement theory.

That's about all I have to say. I just wanted to sort of summarize by
saying that the micro-electricity industry is now providing samples where
we can start testing some of the more fundamental predictions of quantum
mechanics,




138

References

*

Current Address: Department of Physics, University of Maryland,
Coliege Park, MD 20742, USA

# The material in this paper is a summary from the video tape of the talk
presented by Dr. Webb at the meeting. Any errors in interpretation are
those of the editors and should not be blamed on the author.

L. Levy, et al,, PRL E4, 2074 (1990)

[P




S. CTION 4
BLACK HOLES AND QUANTUM GRAVITY

.L




EVIDENCYE FOR A MASSIVE BLACK HOLE IN THE CENTER OF OUR GALAXY
CHARLES 11. TOWNES

University of California, Physics Department
Berkeley, California 94720, US.A.

ABSTRACT

Use of wavelengths other than the visiblo have recently allowed astronomers to study the
center of our own galaxy, until now hidden by interstellar clouds. The densitics,
ionization states, temperaturcs and velocitics of gases and dust ncar the galactic center
tell us the radiant cnorgy proscnt and that the gravitational ficld corresponds to a black
hole of 2-3 million solar sassscs at the center. More reeent measurciments of stellar
velocities in the region continm this cvidence. However, precise identification of which
objeel may correspond to a massive black holc and explanation of other phenomona
obsorved in the galactic center are still matiers of debato.

Our galaxy has many massive dark clouds composed of common molecules and
dust. So many clouds lic beiween us and the center of our galaxy that we obtain no
detectable visible light from the galactic center, and hence until rather recently
astronomers werc not able to study this important region. During the last few decades the
usc of rudioastronomy, improving technology in the infrared region, and the availability
of spucceraft to measure x-rays and gamma rays have all given us opportunitics to deteet
radiation from this region and as a resull we now know much about it, even though there
are still puzzles.

High resolution radioastronomy has identificd a rather powerful point source' of
continuum radiation rather closc to the dynamic center called Sgr A*. In addition, there
is an oval shaped ring of fast moving ionized gus” * * corresponding to the projection of a
circular ring rotating at approximately constant velocity around Sgr A* and at a distance
of about 4 % light years. Qutside the ring are molecular clouds of varying density but
generally in the range of 10* to 10° molccules per cubic centimeter. Inside the ring there
are blobs of ionized gas of similar density, also regions in which almost no gas exists, and
at least one sizeable atcmic gas cloud. Analysis of the velocitics of these gases indicates
th ot ingside of the ring there must be a total of about 4 % million solar masses and that
there must also be a concentrated mass in the center of a fow million solar masses”.
Overall, both the ionized and the molecular clouds are not in a steady stite configuration
or velocity distribution, indicating that within the last hundred thousand years some rather
violent phenomenon must have taken place. This might have been several very large
supernova explosions, though the total magnitude of the disturbance is almost too large 1o
«xplain this way.

Recent high sensitivity and high resolution infrared cameras have been able to

detect a number of hot stars in the central region®, with concenirations cspecially high
within about 1 light year of the radio point source Sgr A*. In addition, the velocities of
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cooler stars in this region have been mecasured from the spcctrum of CO in their
atmospheres’. It is found that these velocities correspond rather well 1o velocities of the
gas already mentioned. However, the stars give a somewhat more sccure measurement of
the velocity distribution and hence the gravitational field in the region than does the gas,
because there has always been an uneasy feeling that some other mechanism might
possibly have accelerated the gas, such as varying magnetic ficlds. In fact, however,
measurement of the magnetic fields through Zeeman effects® on atomic and molceular
transitions indicate that the ficlds are less thar about 1 milligauss and too small to have
very much effect on the dynamics of the gas. ‘

General cxpectations for the source of mass in the center of the galuxy have been
that it would be cither a densc collection of stars broadly similar to the globular clusters
which are very familiar to astronomers or that there might be some combination of stars
and a central black hole due to material continually falling into this gravitational well. 1f
the mass is duc to a cluster of stars alone, then because of interstellar collisions the stars
would on the averape have the same velocity independent of the distance from the center
and a density distribution proportional to 1/R”, where R is the distance from the center.
On the other hand, if the gravitational field is produccd by a sin§lc point mass or black
hole, the velocities of stars or gas would be proportional to 1/R”. In fact, at distances
greater than about 5 light years the velocities appear to be dominated by stars and are
constant as a function of distance trom the center. Inside of this distance, however, there
are deviations from constancy. The incrensed velocity with decreasing distance is
particularly noticeable inside of a few light years and indicates the presence of a very
concentrated mass at the center of 2 or 3 million solar masses. The only form which
theory presently allows for such a concentration is a black hole.

Although Sgr A* is a good candidatc for a black hole, nevertheless neither it nor
any other object near the center is presently producing the spectacular phenomena we
normally expect from a black hole into which much material is falling. Long bascline
radio interferometry has been able to demonstrate that Sgr A* i ﬂuilc stationary or
moving only very slowly, at velocitics less than about 25 km per sec™. Other objects in
the same region characteristically move at least about 200 km per sce. Hence, there is
evidence that Sgr A* must be substantially morc massive than other stars or objeets in the
same region. While this source emits radio waves and infrared with character'stics
somewhat like those expected from a black hole, the total radiation at the moment is quite
weak compared with normal expectations. Perhaps material previously falling into the
black hole produced such 2 violent generation of energy that materials have been blown
away in the recent past, perhaps with the event which must have disturbed the clouds
during the last hundred thousand ycars and blown gas away from the center. However,
there is presently some gas close to the source and we must suppose that cither the
generation of energy is unusuaily fow at this particular moment or that thig black hole is
behaving somewhat differently from our expectations.




143

Observations of x-ray radiation from satellites enlarge the puzzle of Sgr A*. While
there are some x-rays coming from the region of the galactic center, they arc relatively
weak. Furthermore, because x-rays would be scattered by clouds surrounding the galactic
center, one can look for the scattering and hence trace something of a histcry of any
powerful production of x-rays from the center over the last few thousand years. Some of
the x-rays would have moved out into our palaxy a few thousand light years and then
been scattered towards us. Bvidence shows that Sgr A* wus a relatively weak source of
x-rays cven throughout the last few thousand years', In spitc of this lack of production
of the high power which is nomally expected of a black hole, the geavitational cvidence
based on velocities of gases and stars seems to provide rather clear evidence for a high
concentration of mass, presumably a black hole. Furthermore, the gravitational field of a
black hole is a characteristic about which we cannot be mistaken, whereas the generation
of cncrpy from infall represents a much more complicated theoretical problem, which
faces us with some uncertaintics,

Characteristics of the ionized gas and warm dust radiation from the central few
light years of the Galaxy indicate the presence of intense ultraviolot radiatiop and a total
luminosity about 107 times that of the sun. These characteristics appear to be explainable
by the presence of a few tens of rather hot (1 » 30,000 K) stars in this region which have
recently been detected. Why these stars are present, however, is a puzzle., I there was
star formation from gascs near the center, it must have oceurred within the last few
million ycars and have formed a very unusual collection of stars, Vurthermore, present
conditions in the galactic center do nat scem favorable for star formation.  Perhaps
instcad, these stars represent mergers ol several stars in this region of high stellar
densitics, somewhat as the "blue stragglers” in globular clusiers wme thought to have been
formed. At present, their formation and character are puzzling, as 1s also the exact nature
of the unique source, Spr A*.

The great progress recently made in observations of the galactic center have been
duc o important technical and instrumental developments as well as vigorous
astrophysical rescarch, Fortunately, we can expect further instrumental progress and
hence perhaps a thorough understanding ol the very interesting iaboratory which is our
galuctic center, und the remarkable phenomiena oceurring there.,
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HLACK HOLES, WORMHOLES, AND THE DISAPPEARANCE OF GLOBAIT. CHARGET

SIDNEY COLEMAN
Department of Physics, Harvard University
Cambridge, MA 02138 USA

ABSTRACT
One of the paradoxes associated with the theory of the {formation and subscquent
Hawking evaporation of a black hole is the disappearance of conserved global charges. 1t
has long been known that metric fluctuations st short distances (wormholes) violate
global-charge conservation; if global charges are apparently conserved at ordinary
energics, it is only because wormbole-induced global-charge-violating terms in the low-
energy cffective Lagrangian are suppressed by large mass denominators. However, such
suppressed interactions can become important at the high cnergy densitics inside a
collapsing star, We analyze this cffect lor a simple model of the black-hole singularity,
(Our analysis is totally independent of any detailed theory of wormhole dynamics; in
particutar it does not depend on the wonmhole theory of the vanishing of the cosmological
constant.) We find that in general all charge is extinguished before the infalling matter
crosses the singularity. No global charge appears in the outgoing Hawking radiation

because it has all gone down the wormiholes.

T This abstract is a report on work done with my graduate student Shane Hughes, A
full description of the work is available in Phys. Lett. B309, 246 (1993).
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THE CONFLICT BETWEEN
QUANTUM MECHANICS AND GENERAL RELATIVITY

LEONARD SUSSKIND
Department of Physics, Stanford University,
Stanford, California 94305-4060

It is a great pleasure for me to contribute to Yakir Aharonov's festschrift. Over the past
three decades that we have been close friends, 1, like so many others, have found Yakir's
profound insights truly inspirational, The only subject that [ can remember us disagrecing
about is the quanium mechanics of black holes. It is a small irony that I choose this Lopic
for Yakir's celebration.

Introduction

It is almost onc hundred years since the discoveries of the quantum and of
special relativity. It has taken most of the twenticth century to synthesize these into the
modern gquantum theory of ficlds and the st*nd.~d model of particle physics. By
contrast almost nothing is known about the coi. gciion between quantum mechanics
and the general theory of relativity, The relevant phenomenon are too remote and
inaccessible to experiment for us to expect much guidance from that direction in the
foreseeable future. For this reuson most work on the subject has been guided by purely
mathematical considerations.

I believe that we need more than this to keep us on the path of phenomenology
(what used to be called physics) and not wild speculation, and that in the absence of
real experiment our only hope is to focus on gedanken experinments involving realistic
situations which may be beyond our technological capabilitics but are otherwise
possible. Perhaps we will uncover physical paradoxes and puzzles whose unraveling
will provide deeper insight than we now have. Let me just remind you how much was
learned from the paradoxes concerning the constancy of the speed of light, the
finiteness of specific heat of radiation and the stability of the atom.

Why then black holes? The reason is a combination of factors, FFirst of all black
holes are real objects which can be assembled from ordinary matier. To think that black
holes can not exist or have never formed is far more radical than to assume the
opposite.

Secondly, we know from the work of Bekensicin aud Hawking that black holes
are catalysts from new phenomena that intimately involve gravity and quantum
mechanics. Magnetic monopoles also act as catalysts of, otherwise, very remote
phenomena, namely the violation of baryon conservation. In the case of black holes, we
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Co not know with certainly what the catalyzed effects are but there is reason to believe
that they are more far reaching and profound than baryon violation. They may even
involve the breakdown of the principles of quantum mechanics.

The central problems I will discuss has been with us since Hawking's remarkable
observation that black holes evaporate. The main reason it has stimulated recent interest
is the discovery of 1+1 dimensional theories containing black holes. Initially it was
thought that these theories were so simple that surely we could completely analyze
them and discover the precise nature of black hole evaporation. This is not what has
happened. The 1+1 dimensional theories have just reinforced Hawkins original
arguments leading to his disturbing conclusion that black holes scem to catalyze a
breakdown of quantum mechanics.

Black Holes and Thermodynamiics

In 1973 Bekenstein raised the question of whether the sccond law of
thermodynamics could be violated by dropping thermally excited matter into a black
hole so that its entropy could be: caused to disappear. Based on Hawking's obse-vation
that the total area of black hole horizons always increases, Bekenstein postulated that a
black hole has an intrinsic entropy proportional to its area measured in plank units. The
precise formula is
g - ared
Since the mass and arca are related by 4

A =4r R2 = 161 M2,

one has a connection between entropy and energy
S = 4n M2

If one also postulates the usual thermodynamic relation
dE =TdS.

Then the temperature of a black hole is i

N St M

That a black hole should have entropy is not so surprising. Entropy is a measure
of ignorance. More exactly it is the logarithm of the number of macroscopically
indistinguishable microstates of a system. Since from the outside one can never tell
what a given black hole was formed out of, it is reasonable that it has an entropy. It was
morc surpiising that it has & temperature.,




Hawking soon realized that the finite temperature should cause a black hole to
radiate like a black body. Indeed, Hawking was able to show by quantum field theoretic
ans that a black hole radiates like a body of arez ~16% M2 at exactly the temperature
8—1\‘4_ Thus its luminosity is given by the Stephan Boltzmann law
n
% = Luminosity ~ area x T4 ~ const

M2

It therefore follows that the black hole radiates away its energy in a time ~M>. The
radiated encrgy is thermal with a gradually increasing temperature. A solar mass black
hole would have a temperature ~10-1lev which would make it far cooler that the
ambient microwave background. It would therefore absorb radiation and grow. A
miliion ton black hole would have a temperature of order 10 GEV and a lifetim  -10%
SeC.

Evaporation of the black hole is not in itself a probiem. The paradox announced
by Hawking concerns the fate of information which falls into the hole. Let us consider
two distinct (orthogonal) ways of producing a black hole of a given mass. The two
configurations may be a collapsing neutron star, the other an antineutron star. The
difference might be more subile, consisting of only a single neutron being replaced by
an antineutron. In either case the two initial configurations are described by orthogonal
vectors. How many distinctly orthogonal configurations can produce a black hole of
mass M? Classically the an.wer is infinite. If however we are to believe the usual
connection between entropy 2:nd information, the result should be

~exp$S ~ expM2,

On the other hand, the no-hair theorem tells us that the geometry outside the
horizon is unique. Hawking's calculation of black hole radiation only depends on the
exterior and produces featureless thermal radiation which in no way depends on the
deiails of the in falling matter which produced the black hole. Evidently this
informa.don is lost unless

1) The black hole ceases evaporating leaving a remnant containing the information.

2) A more complete computation of the Hawking radiation which includes the
quantum dynamics of the horizon produces a mechanism for imprinting the
information on the Hawking radiation.

An S Matrix?

'tHooft has phrased the questi follows: The initial state consists of a set of
ingoing particles. The particles cou.i be composites such as atoms, planets,
Encyclopedia Brittanicas (for some reason theorists love to throw encyclopedias into
black holes) etc. The outgoing stuff is also particles which in some approximation look
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like thermal radiation. If ordinary quanturn mechanics describes the event of formation
and evaporation then it must be described by a unitary S matrix.

Siin > =|out>.

Since the S matrix is unitary the initial state should be reconstructable from the final
state
lout > = 8in >,

thus quantum mechanics forbids the erasing of information.

Let me be a little more precise. In general, quantum mechanics will not allow us
to reconstruct an initial state by doing a set of experiments on the final products of a
single event. I have in mind an ensemble of events, all prepared in identical manner. In
some of these events I measure a complete commuting set of operators which provides
a probability function in this basis. In another subset of events, I measure another set of
operators which do not commute with the first. With enough such measurements the
quantum state of the final radiation can be obtained. It should be a pure state.

Now do the whole procedure over with an initial state which is orthogonal to the
first. The resulting final state should be orthogonal to the first. The problem is that
according to Hawking's calculation the products of evaporation consist of absolutely
thermal radiation.

So what, you say. Exactly the same thing happens when a bomb goes off. The
initial detailed features of the bomb are erased but no one thinks quantum mechanics is
violated. It is instructive to consider this even ir more dutail. Let's suppose the
explosion takes place in a cavity with perfectly reflecting walls except for a small hole
where radiation can leak out. The initial state consists of empty cavity plus bomnb plus
encyclopedia. After the explosion the cavity is filled with hot gas and radiation which
soon comes to equilibrium. Rudiation slowly leaks out. Eventially the box is in its zero-
temperature groun ! state and the thermal entropy of the outside world is increased by
the outgoing radiat n.

I will begin analyzing this experiment by first considering two kinds of entropy
which exist in quantum mechanics. The first T will call entropy ot entanglement.
Consider two subsystems, A and B. In our example, A is the region outside the cavity
and B is the inside region. Assume the space of states is a product Ho ® Hy. A wave
function is a function of the coordinates of a and those of b.

O (a,h)
The density matrix of b subsystem is

Py =3 @' (a, b)b(ab
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and that of the a subsystem is

L]
Pa = 2,0 (a’b),®(ab)
W
The entanglement entropy associate with a given density matrix is
Sg=-Trplogp

Thus, it general, the subsystems A and B have entropy due to entanglement.
Furthermore it is very easy to prove that
SE (A)=Sg (B)

The only situau sn in which Sg is zero is @ (a,b) is an uncorrelated product @ (a)
@ (b). If th~ interaction between A and B is switched off Sg (A) and Sg (B) are
conserved. I'he entanglement entropy is not the entropy of the second law. One final
point is if the dimensionality of Hp is Da then the maximum value Sg (A) (and
therefore Sy (B)) can have is -log Da.

The second kind of entropy §; is thermodynamic entropy or entropy of
ignorance. Sometimes we assign a density matrix to a system, not because it is
quantum-entangled with a second subsystem, but because we are ignorant about its
state. We assign a probability to different states. For example if we know nothing about
a system, we assign the unit density matrix, If we know only the energy we assign a
projection operator 8(E - Eg). In thermal equilibrium we know the probabilities for a
small cubsystem to have energy E and we assign the Maxwell Boltzmann density
matrix. 1 ]

pMa == exp (-BH)

The entropy of ignorance is always larger or equal to the entanglement entropy.

Now, following Don Page, let us consider the time dependencies of the various
entropics in our experiment. Begin with the thermal entropy Sy (B). At first it's zero
because we assume everything is know about the bomb-box system, Actually there may
be a4 small entropy of entanglement with the outside but if the inside and outside are
weakly coupled it is small. The bomb cxplodes and the thermal entropy suddenly
increases to some maximum characterized by some initial temperature T. As time
evolves, the box cools and the thermal entropy decreases to zero.

Now consider the thermal entropy outside 1he box. It begins at zero and
gradually increase as the thermal radiation escapes. According to the second law, its
final value exceeds the thermal entropy in the cavity just after explosion. Fig. |
illustrates the evolution.

Now consider the entanglement entropy. Siace they are equal inside and outside,
we only need to consider the inside of the cavity. Since the cavity is initially almost
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unc rrelated with the outside Sg is zero. This is still true shortly after the explosion.
However as photons leak out the inside and outside become entangled and Sg (B)
increases. Eventually howcever since Sg (B) < Sy (B) it tends to zero. This is because the
cavity returns to the ground state. This evolution is shown in Fig. 2. Evidently the final
exact density matrix of the outside is significantly different in some subtle respects
from the coarse grained density matrix ascribed to it by the thermal description.

Radjatign Outside

Radiation
in Cavity

Thermal Energy

Time

Figure 1. Evolution of 'Thermal Energy Inside and Qutside a Box.

}

Exchange Enthrophy

A\

Time

Figure 2: Evoluton of Entanglement Entrophy.

To understand the difference consider the time at which Sg is maximum, The
entanglement entropy outside the box may be comparabie to the thermal entropy. At
this time large correlations exist between the outgoing radiation and cavity, Later on
when the box has cooled, those correlations become correlations between the radiation
which came out carly and the lately radiated photons. In other words, the subtle way in
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which the outgoing radiation is not exactly thermal is the existence of long-time
correlations. Locally the radiation looks extremely thermal. It is these correlations
which carry all the initial information . The central question facing black hole theorists
is whether such subtle long-time correlations exist in the Hawking radiation
accompanying black nole evaporation. The dilemma is that if they do not, then the
process of formation and evaporation cannot be described by an S-matrix and ordinary
quantumn mechanics can not describe it. However no known mechanism exists for
transferring the information from the infalling matter to the outgoing radiation. Let us
see why this is so.

Penrose Diagrams

A Penrose diagram is a schematic representation of a space time which is
especially aseful for spherically symmetric situations such as a Schwartzshild black
hole. All of space time is represented on a finite region with time-like, and space-like
infinities mapped to points, For example empty flat space time is shown in Fig. 3.

t =+ oo
1+
r=0 r=oo
I
{=—o00

Figure 3: Penvose Diagram for Flat Space-time,

The lines labeled 14 are called past and future light-like e, They are the places where
light signals begin and end. All radial light-signals are represented by 459 lines.

An eternal black hole is shown in Fig. 4. The wavy dark lines are past and future
singularities and the past and tuture horizons are dashed lines.
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t=-00

Figure 4: Penrosc Diagram of an Eternal Black Hole.

In classical general relativity, a black hole can be formed from infalling matter
but does not evaporate. The Penrose diagram for a black hole created by an infalling
massless pulse of radiation is shown in Fig, 5.

{=—oco

7/

/

/ Horizon

Infalling Matter

Figure 5: Pearose Diagram of a Black Hole formed by Infalling Matter.

-
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Finally the Penrose diagram for the formation and subsequent evaporation of a black
hole is shown in Fig, 6

Hawking Photons

Figure 6: Peniere Diagram of a Black Hole that forms and then evaporates.

Let us now consider a spacelike surface ¥ which consists of a part inside the
horizon und a part outside as in Fig. 7.

e e
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t= oo

Figure 7: Spaccelike Surfuce X across the Horizon .

The spacelike surface intorsecis both the infalling mutter and the outpoing
radiation. According to standard guantun field theory, we can specify 4 quantum state
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on this surface which lives in a product Hilbert space which by analogy with our
previous discussion we label Ha ® Hp where Hp is the state space inside the black
hole. Since to the future of ¥ the inside and outside evolve independently, their
entanglement entropy are separately conserved. If the entropy of the radiation is to be
zero, it must already be zero on X. This in turn would require the statc on £ to be a
product, @ (a, by = @ (a) ¢ (b). Let us also call the incoming state on I-, lx > in. Let us
denote the initial state dependence of @ (a) and ¢ (b) by Dy (1), ¢x (b).

[x > — ®(a),(b)

Now assume that an outside observer who sces only A can describe such events
by a unitary S matrix. This requires the observed final state Oy () to be linearly related
to x. From the form of the final state ®x (a) ¢y (b) it follows that if O(a) is linear in x,
¢ (b) must be independent of x. The meaning of this conclusion is that there is no way
that all of the information in X can escape in Hawking radiation unless it is completely
obliterated betore crossing the horizon. The obliteration of the initial state is however at
odds with our usual conception of the horizon. It is almost universally belicved
(including by me) that an infalling observer feels nothing unusual as she crosses the
horizon. Classically the horizon of a large black hole is locally very flat with no large
deviations from the {lat vacuum. Furthermore quantum field theory in such a
baciground indicates no significant quantum corrections to the flat-space vacuum, All
indications are that the information contained in infalling matter is not deflected as the
herizon is approached. By an argument similar to the above, one ought to conclude that
the state of the Huwking radiation is independent of the infalling matter so from an
opcerational point of view, quantum mechanics would be violated.

The trouble with this viewpoint is that it does not illuminate the meaning of the
Hawking enuopy. If we think that entropy has its usual meaning then the entanglement
entropy of the decaying black hole (or the radiation) should be Iess than or equal its
thermal value which according to Hawking tends to zero as the mass evaporates. In fact
if an extremely large black hole of mass M evaporates to mass m (still much bigger
than Planck) the outgoing radiation should have thermal entropy larper than M2 but
entanglement entropy smaller than m2. This should mean that long-time comrelations
carry out large amounts of information. Any other resolution of the information
paradox should also explain why ordinary thermodynamics works for an outside
observer without the usual underpinnings of standard quantum mechanics.

I bave spoken with a large number of people from both the particle physics and
the gravity communitics, some of whom I consider very deep thinkers. I have found no
clear pattern in their opinions. Hawking it stongly convinced thot information loss is
catalyzed by black holes while ‘tHooft is equally convinced that an S matrix exists.
Aharonov is the champion of a group whao believe that plancksized remnants store all
the initial information. John Wheeler would only say, "Hmmun, this is disturbing”.
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Perhaps that is all that should be said now. As for myself, I believe the foundation of
Guantum mechanics and information theory must be correct and that an § matrix exists.
An cui :ide observer seces the hotizon as a thermally excited membrane. 1 believe that a
correci description will be found in which, like all real membranes, the information
stored on it when it is thermally excited will be accounted for as it returns to its ground
state. Nevertheless, I also believe that a freely infalling observer sees nothing special at
the horizon, but since he can not communicate this fact to the outside, no contradictory
conclusions will be reached by an observer. However, at the present time this view
seems inconsistent with the traditional ideas of local quantum field theory which would
demand that the question of whether an infalling observer passes through the horizon or
is disassembled into bits and radiate as Hawking radiation would have an invariant
answer, Perhaps this is one of those times where progress can only be made by
simultaneously believing two apparently inconsistent things.




UNITARITY OF THE BLACK HOLE SCATTERING MATRIX
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Appronches towards the problem: of constructing an S-mateix fur a4 hlack hole are
outlined.  An earlier vroposal by this author snowed thiat thiz Sauatrix will be
related to string theory amplitudes (though they are no. wdentical). A new approach
formulated here involves the entire black hole history, for which a topologivally
trivial Penrose diagram is constructed, We can then construet seginents ("blork 5
of the S-matrix, for which there is no problem of info mation dradnage. Beeanse of
this it is suspected (though not proven) that the S matrix constructed aong snch
lines will be nuitary,

1. Introduction

The problem of reconciling the theory of general velativity with the prin
ciples of quantun mechanies is one of the deepest and most fondamental ones of
theoretical physies and it coutinues Lo mystify many of ws. Now the procedure
of veplacing u "elassical” theory by o corresponding ”quantum mechanical” one is
straightforward in many cases; i particuline when we are dealing, with velatively
tiny juteraction strengths or asmall number of degrees of freedom. Indecd, if we
cousider circumstances where the gravitationa! foree is weak ad therefore aeees
sible to « perturbative treatment we know fairly precisely how to perform (his
so-called "guantization procedure”. The resulting theory, perturbanive quantim
gravity, turns out to be similare to any other gauge theory, exeept that when in
ereasing, accurneies are required new, undetertnined pliysieal parnsieters cinerge:
subtraction constints assoriated with winconormalizable interaetions, i eomplh
eation, though of course s fundimental one, s relabively mild compared 1o the
obstacles one encounters whenever o "non -pertarbadive” formalisin v acked (o
One then notices that any attempt even at giving i sensible frame for o deseription
of what wight Lappen will falter ab distanee seales smnller than the Planck lenerh,
A fundamentully new approach is needed.

One rveason why auy atteinpl bhased on the elassieal deseription of pravity
must break down is s hisic instability of the gravitatiounl foree; the possibility of
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gravitational collapse. As soon as too much energy is concentrated within one tiny
voluwe clement, a black hole - sometimes of considerable size - ewerges. In a theory
of quantized elementary particles something at least as complicated is expected to
heppen. But this would then be a drastic deviation from one of the basic starting
points in quantum ficld theory, namely that particles can be treated, in o first
approximation, as if they move independently of cach other, as if particles states
can be simply superimposed on top of cach other. In the high energy regime this
must be utterly false.

If we add to this the observation that the high energy regime of a particle
theory is connected to the low energy regime by Lorentz transformations we see
that this brings into doubt either the basic postulates of Lorentz invarinnee, or
the superposition principle for quantized particle fiekds, the applicability of partinl
differentind cquations to these fields, and the like.

Whenever extremely strong gravitational ficlds come into play we encounter
fundamental problemns of this sort in our understanding of the basic laws of physics.
The stroage st gravitational tields possible occur in the vicinity of black holes, This
brings us quite naturally to the consideration that indeed black holes e the pro-
totype testing fucilities for any quantun gravity theory, A proper incorporation of
black holes in any theory of quantized gravity must bhe absolutely essential, sinee
they form the natural asymptotic limit of the energy spectiim of "most pointlike”
particles.

And most standard theories of pravity do not incorporate black holes prop
erly. In a proper theory black holes; or nt least objects that would belinve like black
holes in the limit of Lrge mass and size, should oceupy o uabural position in Hilbert,
space, be ineluded o the anitarity eonditions of the & martix, aud so on.

In stead, whan s waindly done 1s that black holes are treated iu the so-
called background formalism.  One specilies the metric as if it were a classiend
one, and then performs quantumn field theory with respeet to this background, At
first sight one would expeet that this were o correet procedure, comparable to,
for instunce, the treatinent of magnetic monopoles in a gange thcory for elementiry
particles, But the outeome s drastically, sud catastrophically, different?, [t is found
that, when viewed this way, qnantum black holes extract and destroy ”quantum
nformation”. In teris of pure quantum states this means thal when we start
with two states that are orthogonad o each other iu Hilbert space, for instance
beeause thiey differ by the presence of one extra particle moving into the black hole,
these states become indistingnishable after a while, and hence cannot continue to
be orthogonal to cach othier; if they did, the nuuber of possible states inside a black
hole wonld rapidly surpass the total munber of possible states in the universe. In
a slightly different interpretation of the swne mental exercise one would say that
a quantum mechanically pure state evolves naturally into a quantiun mechanieally
wixed state*

* A similar phenomenon seems o oceur in theories of multiply cannected universes. Here an uneer-

tainty in the fundamental interactions arises on top and above the familiai quantum uneertainties. Pure
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One could try to maintain, as indeed is often done, that black holes must
therefore be radically different from elementary particles, including solitons such ag
magnetic monopoles. But this is too rash a conclusion. It would imply that black
holes arc not even ”quantum predictable”, but only obey probabilistic laws. To this
author such a lack of precisely defined physical equations such as the Schrodinger
equation is not likely. Surely the background metric approach to black holes can-
not be right, just because it assumes that the particle fields can be superimposed
onto the background fields, and we had already concluded that this superposition
priuciple cannot be correct.

We can pinpoiut in another way the complication that was ignored; there
arc interactions, in particular gravitational ones, between the in- and outgoing par-
ticles. Now under normal situations this would not have been a great disaster. In
quantun field theories one can easily correct for such interactions by adding n series
of successively tiny perturbative corrections. But the gravitaticnsl interactions are
not normal in this respect, If we want to know how the out i react upon any
variation among the ingoing particles at an carlier epoch, we find a disturbing diver-
geuce: the strength of the mutual gravitational interaction diverges ezponentially
with the time difference. Hence any perturbative approach is out of the question
whenever we wis®: to follow the evolution of some configuration over any appreciable
time interval,

In these notes T will skip the general introduction to black holes; which have
been described abundantly in the literature’ -4, Qne important aspeet one has to
remember is that the total number of states, or energy levels, of a black hole can
be estimeted using simple nrguinents from thermodynamics, assuming that a black
hole carries o temperature as given by Hawking!:

KT = /82 M, (1.1)

in units where ¢ = b = G = 1, The result is that the level density p(M) as a
function of the mass M is given by
HM) = MR (1.2)

where € is an unknown constant, The point is that this number is smalll If one
counts the number of levels provided by the thermal particles in the vicinity of the
black hole one finds that the particles further than about one Planck unit away
from the horizon are sufficient to produce all the entropy corresponding to these
levels. The ones closer to the horizon would provide an infinite contribution if we
were allowed to use o lincarized theory, Of course these particles do not obey a
lincarized theory, but the mechanismn by which their contribution to the entropy is
turned off is obscure.

For this reason we expect that incomiug particles indeed do aifect the dotails
of the quantuin state a black hole can be in, in the sense that they determine

staces evolve into mixed states due to this uncertainty, but here this is clearly seen as a shortcoming in our

information concerning the effective interactions, The uncertainty in guestion could be resolved for instance

by performing accurate measurements,
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details of those emerging particles that were closer to the horizon than one Planck
length when the incoming particle entered. Qur best guess is then that the black
hole is just one set of the possible intermediate states in an S-matrix. It should
be in no fundamental way different from ordinary particles. Light particles have a
Schwarzschild radius much smaller than their Compton wavelength; for black holes
this radius is much bigger. This distinction must be a gradual one. And so we
arrive at the ”S-matrix Ansatz"® for the black hole. Once we assume that the black
hole has au S-matrix, we can actually derive many of its properties, because many
of the relevant laws of physics are already known i us.

2. The Pseudostring

We first observe that the nature of the gravitational interactions between
incoming and outcoming particles can very easily be characterized. Incowing par-
ticles produce a horizem shift. This horizon shift may be very tiny, but its effects
upon the outgoing particles grow exponentially with time. They arc also readily
computable®. The wave functions of all outgeing particles are simply shifted, by an
amount that depends on the angular location on the horizon,*

The quantum state is shifted, and henee the outgoing wave functions arce all
multiplied with factors exp(ipewdy), where pa, is the monientum in Kruskal coor-
dinates and 8y the horizon shift, a function depending explicitly upon the angular
coordinates ¢ and . The effect of this operation would be i harmless multiplication
if the outcoming particles were in a Kruskal momentim eigenstate, but of course, in
more relevant circumstances they are not in such cigenstates, This way we conclude
thut any alteration of the form

W’)in - l‘/’ -+ h'/’)m ) (2.1)

where 8¢ carries a given momentum p, (9, 9), affects the outcoming state by the
ahove given operation.

We can now repeal the argiment as many times as we wish so that, in
principle, we should obtain ell other S-matrix clements, The procedure, and its
results, are deseribed in Ref®, They ean be summarized as follows,

The momenta of in- and ontgoing particles py(2,p) aud pow(,p), are to be
defined with respect to Kruskal coordinates, not Schwarzschild coordinates  this
ig a point of coneern, to be diseussed later. When specified at all angular positions
(9,) these momentsa, and in addition soue other quantities such as electric charge
density p(9,p), these variables should entirely specify the gquantum states of the in-
and out- quantwn states respectively. So we refer to these states as

(€2 () and  |pow (), o (£2)) (2.2)

* ‘Phis angular dependence i crneial for onr arguents, since withont such an angular depen

dence one could trangformn (practically) all its effects away, ‘This is why one must be very caceful in

interpreling some popular two-dimensional toy iodels of black holes?,
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where Q stands for (¢,p). The resulting S-matrix can then be written as a functio.al
integral

{(Pout{2) , Pout () | Pin () Pin()) =
N/vu,,(n)w(n) exp i/d’ﬂ( — 5(0aw.)? + putty — = (906)® + ¢(pout — pin)) - (2.3)

Here A is a normalization factor; the Lorentz index u is defined such that p, =
(V2" (Pin + Poue 0,9, pin — pow), similarly u,, and x is a constant defining the unit
of electric charge. u, and ¢ are functional integration variables, depending on the
two angular coordinates on the black hole horizon. w, are like the two transverse
dynamic variables of a "string” whose world sheet is the intersection of the future
and the past horizon of the black hole, which is a two-dimensional surface. ¢ is
a perindic variable (it iy defined as an angle modulo 2x). This is a consequence
of elect.ic charge quantization. Observe that in every respect electromagnetism
appears to be represented here as a Kaluza-Klein theory. This was not put in but
caune out of our theory as a consequence of the $-matrix Ansatz,

The similarity between Eq. (2.3) and a string theory amplitude is 5.~ v,
This resemblance becomes even closer if we represent the in- and out-si:
particles in wave-packets. One then has to integrate over the coordinates (v,y)
convoluted with a wave functien, and these integrals then correspond to the Koba-
Nielsen integrations. An important difference between (2.3) and string theory is the
factor i in the exponent, which corresponds to a purely imaginary string constant®.
Our interpretatica of this observation is that the black hole horizon can in some
repects be regarded as the world sheet of a virtual closed string. The external
particles are inserced there as vertex insertions in the usual sense.

We discovered that one can start with several kinds of fundamental inter-
actions in one’s favorite standard model and observe that these are reproduced in
the functional integral (2.3) on the horizon. Electromagnetism, here repre<ented
hy the variable ¢, being just an example. Non-Abelian interactious give rise to
more complex variables in two dimensious. Quite generally however the following
picture emerges: The gauge transformation generators of the 4-diinensional theory
correspond te the dynamical varicbles in the 2-dimensional one. Therefore the spin
of a physical degrees of freedon in 2 dini~nsions is one less than the corresponding
one in 4 dimensions.

Scalar and Dirac-spinor fields scemn not to generate anything in 2 dimensions.
An exception to this is the occurrence of spontaneous symmetry breaking: if in
four dimensions a symmetry is broken spontaneously, the corresponding symmetry
in 2 dimensions s eznheitly broken: the scalar field in 4 dimensions maps into a
"spurion” field in 2 dimensions (spurions were used in the 60's to describe explicit
symmetry breaking iuteractions). Indeed one may view the value of the sealar fields
at the horizon intersection point as being the spurion parameter.

* The fact that the string constant comes out imaginary should not be seen as a departure from

unitarity, ax was asserted by one author, but vather as a conseguence of unitarity as required in our foninalism.
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A dual transformation in 4 dimensions corresponds to a similar dual trans-
formation in 2 dimeunsions. Thus, magnetic monopoles entering the black holes
generate a topological kink in the two-dimensional system; furthermore, quark con-
finement in 4 dimensions can be seen to correspond to an explicit symmetry breaking
in terms of the scalar disorder parameter in two din: nsions,

Proceeding along these lines it is natural to suspect that a gravitine in four
dimensions corresponds to a Dirac spinor in the 2-dimensional theory. What we have
not underctood at present however is how to incorporate effects of Dirac spinors in
four dimensions in the 2-dimensional theory; they seem to leave no trace.

For more details of the string picture of black holes we refer to Ref?,

3. Problems with Unitarity

Is our scattering matrix (2.3) unitary? A strange new problem arises. One
may observe that the scattering matrix will indeed be unitary, but only so in a very
unconventional Hilbert space. Two states that have exactly the same momentum
(and charge) distribution for the ingoing - or outgoing — particles, cannot be dis-
tingnished any other way and therefore must be identical. In particular the number
of particles entering or leaving at a given spot on the horizon cannot be specified.
This implies that the Fock space of elementary particles will eventually look very
different from what it used to be in elementary particle physics. For instance, the
in- and out- states will carry no label specifying their baryon number. Consequently
the black hole scattering matrix cannot possibly obey baryon number conservation,
Clearly continuous global symmetries in our fundamental particle interactions can-
not be reproduced in the black hole scattering matrix.

Another apparent problem with unitarity arises if the shift éy(v, ) at some
values of ¢ and ¢ becomes too large. It could then be that a particle, originally
destined to emerge in the out-statec wheu the in- wave function was |¢), is shifted
beyond the horizon when the in-state is |¢ 4+ 6¢). This is a consequence of the
fact that we had been furced to define momenta in Kruskal coordinates in stead of
Schwarzschild coordinates. A shift in Kruskal space cun bring a particle behind the
horizon.

We should stress that this latter problem is only an apparent one. There is
no real contradiction with unitarity here because we imagine the total set of allowed
out- states to be much smaller than the Hilbert space spanned by ali possible waves
of outgoing particles. The shift 6y does not affect one single particle but an infinite
series of particles emerging at all times. So if one or several of these disappear
behind the horizon there are always enough others left to enable us to distinguish
thir shifted out- state from other out- states. Thus, our problem is more of a
practical nature than fundamental. It tells us that the standard way to buiid up a
Hilbert space in terms of plane wave of particles cannot be used here.

These problems must be related to another practical problem: even the set
of all functions p(d, ) and p(d,p) is too large. Our entropy aruments suggest that
there should be no more than about one Boolean variable per unit of surface area




164

on the horizon in Planck units. This is as if these functions p and p have a cut-off.
Components of their Fourier transforms in the transverse directions with momentum
larger than a Planck unit should be removed or considered redundant. On the other
hand lots of details on a distance scale just a bit larger than the Planck length are
described by as yet unknown parts of the standard particlcs interactions, These
details will be essential in the definitions of inner products in our Hilbert spaces,
yet they are not yet accessible to us because the particle interactions at those scales
are not yet known,

All this may seem to be extremely unconventional and inaccessible physics,
But it is not quite that bad. We emphasize that the mathematical situation here is
exuchly as in string theories. In string theory also it is not the entire Hilbert space
but rather the scattering matrix that is constructed. If particles are identified as
vertex insertions on a string world sheet then exactly the same feratures do show up
in string theory. Consider namely the Koba-Niclsen integrand with a given array of
vertex insertions, for a given N particle wnplitude. If in this integrand two vertex
insertions occur at the same spot on the world sheet then this is indistinguishable
from the integrand for the ¥ —1 particle amplitude, Replace the string world sheet
by the horizon. The indistinguishability of two particles on the same spot on the
horizon, or rather the fact that this state cannot be distinguished from a single
particle state at that spot, has the same mathematical origin.

4. Unitarity in Complete Black Hole Histories

Onr scattering matrix Ansatz tells us to assuine as a starting point the exis-
tence of a scattering matrix for a black hole. And then we can deduce information
about this matrix by applying all phy sical laws we know. The only reason why this
loes not work completely is that we only know the interactions between elementary
particles at low energies, or, cquivalently, at large distance scales. So we do not
know how to characterize the very small distance features of our scattering ma-
trix, and since inner products of states depend crucially also on the small distance
features, we run into problems as deseribed in the previous section. The general
strategy we are trying to implement is to use the known laws iu as many forms
as possible to reduce these uncertainties as much as possible. Also we cau try cer-
tain assumptions concerning the small distance interactions to check which of these
produce a consistent theory (we saw for instance that baryon number conservation
must not be a symmetry of our basic interactions).

With this strategy in mind we now proceed to consider a branch of the
scattering matrix different from the one considered before, namely the transition
amplitude from a black hole just formed into a black hole exploding into expanding
dust shells. Thus we consider a completely specified in-state, |in), a completely
specified out-state, |out), and assume that one single amplitude (outfin) is given.
As before, the question is to deduce other amplitudes

{out + 4uslin + bin), (4.1)
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where 8o, and &, are tiny alterations, We now proceed in a way very different
from Section 2, namely by first postulating a singularity free, topologically trivial
space-time metric corresponding to the original amplitude. That this is possible at
all is surprising and requires some discussion. The trick is to assume the outcoming
matter to be due to some unspecified interaction process very near the horizon
which gave rise to extremely strong curvature there. This curvature would not be
directly detectable for ingoing or outgoing observers and therefore its presence does
not contradict anything we know. If it were observable it would contradict the
ordinary laws of physics. This is a necessary aspect of the S-matrix Ansatz. The
mere assumption that an amplitude {out|in) exists dovs contradict "normal” laws
of physics. So we are forced to assume something out of the ordinary there, and the
least harmful way to do this is to postulate a conical singularity (actually it is not a
singularity but just a region of very strong curvature, beeause the singularity will be
slightly smoothened). The presence of such a singularity will only be visible when
devices sent into the (approximate) black hole and reappearing somewhat damaged
after the black hole decayed, are coinpared to apparatus that stayed just outside.
But such an experiment will be impossible classically. In stead of these "devices”
we will just consider infinitesimal additions 6¢ to our wave functions and study the
effects on these.

Tlic Penrose diagram is now the one pictured in Fig. 1a. It is topologically
trivial. Apart from a mild (very slightly smeared) singularity at the point § there
are no further singularities. The dotted lines are very much like horizons, but of
course they are not horizouns, they replace them. At the point S the standard laws
of physics seem to be not obeyed. '1'he curvature there is the one produced by a
very violent "interaction” that caused the incoming shell of matter to turn around
and go outwards. It is as if a "chemical” explosion takes place there which was
just strong enough to avert the gravitational implosion. Let us stress again that an
observer who stays outside the black hole (or "pseudo-black-hole”) can never detect
this curvature, so that from his point of view all laws of physics are obeyed.

What we claini now is that this proces may well be reconciled completely with
the known lonws of physics, even at S, by studying quantum field theoretical effects
caused by the curvature at S. In the next Section we shall prove that the singularity
is such that if one sturts off with a local vacuum, a nearly infinite spectrum of
particles will be created there. We will then argue that if on the dotted lines in
Fig. 1. we require the absence of particles, there must be particles in the gray
area. Originally we had "postulated” that there are particles there; we can now
derive that the postulate may well be correct. So the whole picture may become
self-consistent,

In our simplified model we replace all incoming and all outcoming matter
by single "dust shells”. Upon careful inspection one finds that this is hardly an
approximation, sec Fig. 1, where all matter coming in is squeezed towards the
"far past” and everything coming out towards the "far future”. Near S the most
regular coordinate framne is a "temporary” Kruskal frame, and hence all matter in
our space-time dingram is very strongly Lorentz boosted.
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Fig. 1. a) Non-singular Penrose diagram for an entire black hole history.
b) Coordinate frame in the outside region of the black hole is more dense. At the
point S there is a conical singularity.

Our model then is of the same type as the some of the systems studied by T.
Dray and the author in Ref. Here we studied the effect of in- and outcoming dust
shells on the Schwarzschild metric. But in this work we explicitly postulated the
absense of conical singularities at points such as §, so that the occurance of typical
black hole si-igularities at r = 0 both in the past and in the future is inevitable, Now
we take the :ame models with conical singularity at 5, chosen in such a way that
the singularities at r = 0 go awny. The metric one then gets fits naturally with the
g-matrix Ansatz. The strategy is now simple. In Fig. 1 we postulate space-tine to
be flat in ull of the interior region, except in the quadrant where an outside obscrver
sees the black hole, There we have the Schwarzschild metric corresponding to a mass
M. Consider the Kruskal coordinates = and y . Let the physical quadrant be given
by z > 0,y > 0 . Very ncar the Schwarzschild horizons, at the line z = 24 and the
line y = yo, where 2y and yy are very small but positive, we have the malter shells.
At those shells we glue the Schwarzschild metrie agninst the flat space-time metric
such that the Schwarzschild r parameter matches with the flat space » parameter.
The metric is then °.

But a singularity develops at & . This we sec as follows. Suppose we wse
Penrose coordinates, that is, coordinates such that the local light cones have a width
of exactly 45°. One then finds that the rlning procedure just described forces us to
seale down the Schwarzschild solution (ws written in Kruskal coordinates) to a very
small size, and to blow up the internal region of the black hole to large sizes, This
is sketched in Fig. 1b by drawing dense coordinate lines in the outside region and
wide coordinate lines inside.

In Fig. 2 we illustrate what happens to geodesics near such a point. At
the point B iu Fig. 2¢ we make the transition to Lorentz transformed coordinates,

[
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Fig.2. In a) and b) the region I is Lorentz boosted compared to region I, Since
this is just a coordinate reparametrization a geodesic (dotted line) goes straight. In
¢} we performed the transformation of a) at the point A and the one of b) at the
point B. At both points, the orthogonal coordinate was squeezed. Conscquently, a
geodesic going throuygh region I is now bent over.

but because the orthogonal coordinate is scaled in the wrong direction a geodesic
crossing at B is bent over. The same happens in A, Thus, two particles with equal
velocities may cud up having different velocities if they pass the poiui S at oppusite
sides. Thus the gingularity ut S has the effect of a Lorentz transformation if oue
follows a loop around it,

For a black hole with lifctime long compared to its size the lorentz hoost
across S is extremely large. For the remainder of our considerations we prefer to
concentrate on the case that this Lorentz boost is not so extremely large. This hap-
pens either if one considers very tiny black holes, or black holes with an extremely
"unlikely” history. The only reason then why this history is unlikely for large black
holes is that the amplitude is too small after maltiplication with the approprinte
phase space factor, which is also too small, so that other processes (giving the hole
a lifetime of order M?®) are more probable, W2 just point out that this is not at all
an objection against considering the amplitudes for such ”unlikely” histories.

Thus, we concentrate on Fig. 1 where the region very close to the origin, S,
is described by Fig. 2c. let the total Lorentz boost along a closed curve be given
by the parameter ¢ in the boost matrix

cosh¢ sinhg 0 0
_ | sinh¢g coshgp 0 O P
b= 0 0 1 0 (“2)
0 0 0 1

The local effect of the shells of matter is small compared to the effect of the conicu!
singularity.

5. Particle Creation by a Conical Singularity

We now consider the effeci a conical singularity of the sort described in
the previous Section has on a quantized state in field theory. Since the metric
has no timelike Killing vector there is no conserved energy. 1 we begin with the
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vacuumn state at t = —oo the state at t = +oo will in general contain particles. The
computation is not hard. Observe that, in contrast with the familiar calculation
of the Hawkirg-Unruh effect there will be no information loss. Later we will be
interested in different initial states, but let us begin with the vacuum.

For simplicity we take the field to be scalar. The local operators p(x,t) and
#(x,t) are given by

1) = i areth® 4 ol g ik
e( .‘)—;W( ke +ay ) (5.1)

and
0
gty =Y :_(_ia.,e“"ﬂa{c“"’), (5.2)
— V2V

where a; and a} are annihilation and creation operators at given three-momentim
k. As usual we define &7 = /(k7 +m?) and kz = kx — k% .

We take Eqgs (5.1) and (5.2) to hold at time ¢ < 0, before the singularity
occurred. At time ¢ > 0 we take the fields to be

- 1 iky gt ik
w(u)—gm(bw V4 byt (5.3)

where y are Cartesian space-time coordinates at ¢ > 0. They are related to the
x, t-coordinates by

y=z if = <0, y=L "z if x>0, (6.4)

where I is the Lorents trausformation (4.1).
One finds that

b= Ahar+ Y Asal, (b.5)

P k
where A}, and 4;, are coeflicients. From now on the variables p and & are only
the z-co'aponents of the motenta, the ones that transform non-trivially under

the Lorentz transformation (4.1). p° and & are the usual timre components of i..e
momenta, Also we write = = z;. Let us furthermore use tlie shorthand notation

coshg¢=c , sinh¢=u, (5.6)

where ¢ is the Lorentz boost parameter, We will use a finite-volume formulation so
that the momenta are discrete. The coefficients are then computed to be

1 [ > ' ihee ck® = 8k ik_akd o p)s
A:;k:W —k—o.A dt((li-p—u‘)!? =) +(1?}:T)C'(Ck k p)) ) (57)

where V is the volume (soon to be sent to infinity).
The integral over x can of course e calculated:

+ _ —i(p" 2 &) | i(p° + (ck® — sk))

1
A”"_ 2V /p°k° ( k—p—ie ck—sk“—p+ic) ’ (5.8)

| —— et
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It is illustrative to compute the occupation number (b},}0 , where ()¢ corre-
sponds to the vacuum of the annihilation operators a,. It is found to be

bl =Y 1A =
k

1 [dk ((p" — k) (ck — k" — p) + (v — k)(p° — ck¥ + sk))’
(k—p)(ck — ak¥ —p) !

= 8xVpt J k°
where the summation was replaced by the integral for V — oo, and in the integral

we must insert
=\ B (5.10)

and similarly for p°. Here k is the transverse part of the momentum k.
The rest is straightforward arthmetic. All integrals cun be performed and
the result is

(6.9)

1 ¢
1 FERUSEa, ORI NS
oo = g [mm = z] . (5.11)
For small ¢ the quantity between square brackets is
¢ .
{..]= G —3(i0+”" (5.12)

and if ¢ is large then i approaches
[-)= 1l ~2424de ¥ 4 (5.13)

Note that the p dependence is dp/2p¥ = dpo(p? +m?) , which is Lorenty invariant. In-
variance under Lorents transformations in the ¢ direction is not surprising. But the
invariance in the transverse divection is an accident. The cocfficients A* themnselves
do not have this latter invariance. Also, the fact that Eq. (5.11) is independent of
the sign of ¢ 13 an accident,

The coefficienty of Kq. (5.8) were computed for given 3-momenta. The cal-
culations simplify however if we go to lightcone coordinates instead, The outcome,
such as Eq. (6.11), of course stays the same,

6. Conclusion

We propose to use the metric of Fig. 1 to compute amplitudes (4.1) if one
single amplitude (out|in) 15 given. The conical singularity S is not stroug enough to
cause any loss of mformation, If & were infinitely sharp a vacuum in-state would
cause an unlimited particle production into the out-state. We ean put a bound on
this particle production by smcaring the singularity a bit. We showed that calculat-
ing the evolution of the state that started out as a local vacnum is straightforward.
But what actually will be needed is the evolution of a state that has no particles
coming from (r = 0) (the lower dotted line in Fig. 1a) into a state that has no
particles moving towards (r - 0) (the upper dotted line in Fig. 1a). In general these
states may have particles on the other side (the gray arcas in Fig. 1a). Computation
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of these transitions is much harder because the distinction between left-goers and
right-goers is to some extent arbitrary and hence difficult to implement.

We note that the in- and outcoming particles cansed by the singularity cs-
sentially imply that our Ansatz for the metric is self-consistent. Somewhat nwore
precisely, we propose the following. In contradistinction to the procedure we pro-
posed previously, and which was recapitulated in Section 2, we now assume thit
the variations é¢ of both incoming and outgoing states are too small to have any
divect gravitaional effect, so that here we can superimpose quantum states in the
usual way., We will refer to the particles in 6y as "soft” particles, All particles
whose gravitatioual effects we wish not to ignore (the "hard” particles) we put in
the original states out) and |in). So i ach of these "gravitutional windows” we
can compute a block

{out + bousfin + 6} . {6.1)

Indeed all these ammplitudes are uniquely defined up to one overall multiplicative
coustant, There is no drain of information. Ou the other hand however, there is
a divergence: if § is infinitely sharp the majority of transitions will contain huge
numbers of particles modifying the already heavily populated in- and out-states.
Just because we wish to consider only soft particles in §¢ we must aceept a cut-off
for the singularity 5. The exact location of the cut-off, the transition region between
soft and hard particles, must to some extent be irrelevant.

Note that the trausitions &, - 6,4 themselves will not violate any of the
symmetries of our standard internctions, However in the entire block (6.1) the hard
particles will violate all global symmetries, but for the entire block this violation
will be the same.

We believ: our new proposal will open up different elements of the
black hole scattering matrix and allow us to study this matrix further. Ultimately
all procedures should be combined into one single theory, but we are not yet that
far. By coustruction it seems that there canuot be any violation of unitarity for this
matrix, but we should admit that this has not yet been demonstrated. The problem
is now that the S-matrix deseribing the soft particles alone, after the cut. off, will be
unitary. But without cut-off the blocks (6.1) that we have are cach different parts
of diferent S-matrices. Each of theses nmatrices separately are unitary, but whether
this combination will again be unitary remsing to be seen. A delicate study of the
various limiting procedures involved will be necded to answer such questiouns.
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ABSTRACT

The arew entropy A/4 and the related Hawking tenuperature iu the presence of event
horizoms ave rederived, for de Sitber and black hole topologies, as a consequence
of a tunneling of the wave functional asnocinted to the clvsical coupled miatter
and gravitational fields. The extension of the wave functional outside the barrier
provides o reservoir of quantum states which allows for an additive constant to
A/4. While, in w semi-classical analysis, this gives 1o new infornation in the de
Sitter ease, it yields aninfinite constant in the black hole case. Bvaporating black
holes wonld then leave residual “planckons” - Planckian remmants with iufinite
degencracy, Generie planckous can neither decay into, nor be direetly formed fron,
ordinary matter ina finite thae. Such opening at the Planck seale of an infinite
flilhert space iz expeeted to provide the ultraviolet cutoff required Lo render the
theory finite in the sector of large seale pliysics,

1. Introduction

Tunueling in quantum gravity can generate entropy b2, To understand how
such an apparent violation of unitarily may arise, let us fivst consider a classical
spacetime hackground geometry with compaet Cauchy hypersiuilaces. 1 quantinn
luctuations of the hackground are taken into account, quantum gravity leaves no
“external” time parameter to deseribe the evolution of malter confipurations in this
background. Indeed, the solutions of the Wheeler- De Wil equation®

HWY = 0 (1)

where 'H s the Hamiltouian density of the interacting gravity matier system can
contain no reference to sueh thne when there are no contribntion to the energy from

* presented by FoEnglert
1 K il casher ab taanivin; fenglert at ulbae be

172

e g e — -



173

surfacc terms at spatial infinity?, This is due to the vanishing of the time displacement,
gencrator and even though the theory can be unambiguously formulated only at the
semi-classical level, such a conseqrience of reparametrization invariance should have
a more general range of validity.

To parametrize evolution, one then needs a “clock” which wonld define time
through correlations®, namely corrclations of matter configurations with ordered se-
quences of spatial geowmetries. If quantum fluctuations of the metric field can be ne-
glected, the ficld components gi; at every point of space can always he parametrized
by a classical time parameter, in accordance with the classical equations of molion.
‘I'his classical time, which is in {act a function of the gij, can be used to describe the
evolution of matter and constitutes thus such a dynamical “clock” correlating matter
to the gravitational field®. This description is available in the Hamillon- Jacoby limit
of Eq.(1) where the classical background evolving in time is represented by a coherent,
superposition of “forward” waves formed from cigenstates of Eq.(1). When quantium
melrie ficld fluctuations are taken into account, “backward” waves, which can bhe
inlerpreted as flowing backwards in tine, are unavoidably generated from Fq.(1) and
the operational significance of the metric clock gets lost outside the domain of validity
of the Hamilton-Jacoby limiv. Nevertheless, in domains of metric field configurations
where both forward and backward wives are present but, where quantum fluctuations
are sufficiently smadly interferences with such “time reversed™ semi-classical solutions
will in general he 11(-151'1;';“)1(31. Projecting then out the backward waves restores the
operational significance of the metrie clock but the evolution marked by the correla-
tion time is 1o more unitary: information has been lost in projecting these hackward
waves stemming from regions where quantum fluctuations of the clock are significant,.
This is ouly an apparent violation of unitarity which would be disposed of il the full
content of the theory would be kept, perhaps eventually by reinterpreting backward
waves in terms of the ereation of ©
of the wavefunction Bq.(1).

universe” quanta through a further quantization

T'his apparent violation of unitarity i particutarly nnked if the gravitational
clock experiences the strong, quantuim lluctuations arising from a tunneling process.
This can be illnstrated from the simple analogy, represented in Fig.l, offered by
a nonrelativistic closed systamn of total fixed energy where a particle in one space
dimension & moving in a potential U{z) plays the role of a clock for surrounding
matter and tummels through a large potential barrier. Outside the barrier, the clock
is well approximated by semi-classical waves, but if oo the left of the turning point «
one would take only forward waves, one would inevitably have on the right of the other
turning point b both forward and backward waves with large anplitudes compared
with the original ones. The ratio between the squares of the forward amplitn
Lhe right and on the left of the barrier for a component of the clock wave with given
clock energy 5. is the inverse transmission coellicient, Ny () through the barrier and
provides a measure of the apparent violation of unitarity. In the Hamilton-Jacoby
limit of guantum gravity, the characterisation of tnoneling amplitudes by inverse
Lransmission coceflicients Ny will appear as the nabural one to compute the entropy
trausferable reversibly hetween the metric dock and matter. More precisely, we shall

1 Yor a recent discussion of related problems see reference 7.
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see that, in this hnit) spherically symmetric spacetimes hounded by event horizons
are in general connecled by tunneling to another manifold and that the entropy gained
by tunneling from the latter to the former is, for large barriers, log Mo, Explicit
evaluation of this tunneling entropy yiclds In Ny = A/4 where A is the area of the
event horizon. Tn this way the horizon thermodynamics of Gibbons and Hawking® is
recovered, But the present approach has potentially additional information,

Figure 1. Mhuneling of o nonrelativistie “clock™. The energy of the clock I, s
represented by the dashed line. Ou the left of the tirming point a the clock is well
represented by o forward wave depicted hiere by a single arrow. On the right of the
turning point b the muplification of the forward wave and Lhe larpe concomitant
backward wave are indicated,

The tunneling eniropy In Ny is i last analysis an effect of guantam fluctu-
abions i quantum gravity. Therefore, despite the fact that no violation of unitar-
ity would appear in a complete deseription inchiding hackward waves, Uhis entropy
shauld be expressible in terms of density of states of matter and gravity, Tunneling
olfers an interesting perspective in Lhis direetion beeanse it enlarges the semi-classical
wave function of spacetime to include inits deseription the other side of the barrier,
This can yicld a reservoir of quantium states which may provide, in addition to the
exp(A/4) states building the entropy, residual states which would be expressed as an
“integration constant”™ in the total entropy S of spacetime. Thus we shall write

S Al (2)
and try 1o get some information about the constant € by analysing hoth sides of the

hirrrier,

The knowledpe of ¢ s erucial, in particular for the nnderstanding of the black
hole behavionr at the final stage of evaporation.
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A infinitely large value of ¢/ would indeed indicate that the evaporation cap
only radiate a finite number of “surface” states of order exp(A/4) out of an infinite
sed of available internal states. This mismatch would entively modily the black hole
evaporation process ab its last stage and bring the decay to achalt, Tndeed when the
black hole evaporates Lo the Planck scale, it beeomes, if €735 infinite, a “plum'knn“["]‘
that is a remnant with infinite degeneracy, Causality and unitarity prevent the decay
and the production in a finite Lime of planckons directly oul of ordinary matter for
nearly all such states!? Nawmely, it a planckon state |4, of finite size and wass m
decays {or s produced) within a linite tine 7 n an approximately flat space time
background, the total number of possible final {or initial) stides s lited throngh
causality by the number A (r) ol orthogonal stales with total mass o in a vohine
3, Assuming the number of guantim fields which deseribe physics at scales laege
compared to the Planck scalt - he finite, A (7) is a finite mimber, Unitarity then
implies that if the dimension # () of the hlhert space spanned by the degencrate
states |4y becomes greater than A (7). a subspace of planckon states whose dimen
siow s v () A (r) will be, for tmnes sualler than 7, orthogonal 1o the Tilbert space
of states {ormed by these quantim Bebds, Thas, when e(m)  » oo, penerie planckons
cannol decay (nor be Tormed) wnoa tinite e, OF course the above arpoment does
not. prechide the very formation of Lhe fivile nuniber of distinel planckons which can
be generated ina finike time as remnants of iacroscopie decaying blick holes, This
time is however nnreclated Lo the Be for their decay (creation) divectly ab the Planck
size into (from) ordinary madter quanta; the Talter thne is generically jnlinite,

On the other hand, @zero or finite value of ¢ wonld lead to the divappearanee

ol the hole at the end point ol evaporation and henee probably imply & pennine
. . 3 . . . . . *
violation ol nnitarity within our universe

The main content ol one work s that, inan asyvioptotically flat bacheonol,
the constant € Tor black holes, e dedueed from a WIKEB analyais of tnnneling, isin
lact tdinite, Henee the present approach fndicates that the solution ol the anitanity
probleme pused by the black hole decay i provided by planckon remuantss This
conclusion is however continpent upon the Tantbation of the semi classical approach
Lo quantum pravity used heve and renmains therelore a tentative one,

We

shall tiet review the compitation of tanoeling, amplitudes o quantam

gravity Uiraph static barsiers™ and compute the tunneling entropy for the caws ol

de Sitler spacetime topalopies, However The estimation of ¢ appears in this vase
intractable within the semni classical approsimation, We then shall analyse in Gk
terms the black hole peometries™, The above meutioned resmlts will he derived anid

disenased,

a For it comprehensive veview onrecent attempls (o saolve the blick hole witaty pozzde, e
refevence 100 Sec als relerepee 11
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2. Tunneling amplitudes in quantum gravity.

QOur basic action in four dimensional Minkowski space-time vill be
S = Sgrau + Smnttcr (3)

where Sgray has the conventional form (G = 1) :

1 / 4
v - — 4
‘Sgrav 167\' / ng T ( )

and S ,,.¢ter contain sufficienily many free parameters to allow for the stress tensors
consideced below. A possible cosmological constant term can be included in the
matter action.

Figure 2. Tunneling in quantwin gravity. ‘The two solid curves represent turning
hyperanrfaces £y and Zg separating the dark gray Euclidean region £ from two
Minkowskian spacetimes depicted in lighe gray.

Consider (1*ig.2) in gencral two spacelike hypersurfaces ¥ and ¥, which are
turniag points in superspoce (or turning hypersurfaces} along which solutions of the
Minkowskian classical eq. ations of motion for gravity and meatter meet a classical
solution of their Buclidean extension. %, and ¥, are thus the houndaries of a region
€ of Buclidean space-time defined by the Euclidean soluticn. If £ can be continuously
shrunk to zero one .an span € by a continuous set of hypersurfaces 7. = constant
such that 7, = 7,y 0o £y and 7, = 7.5 on 5y, These 7, = coustant surfaces define a
Fuclidear coordinate system which we shall call synchronous; the Euclidean metric
in & can be written in the focm

ds? = Nz{T,,.I’k) (IT(2 + g.’,(T, Ik) dat da? (5)

where N{r., a4) is alapse Tunction.

PR,
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The Euclidean action S, over &£, from ¥, to ¥, is obtained by analytic con-
tinuation from the Minkowskian action Eq. (3) and can be written as

Se(X2, 1) = /n"f'g;,.d%:+/n“tb;d‘x—/(g,»,-n‘f)’d‘m
£ £

£
(6)
- / l(9;N )9 V/g®) d*.
£

Here 11" and I1* arc the Fuclidean momenta conjugate to the gravitational fielas
gi; and to the matter fields ¢; g is the three dimensional determinant and the
/ symbol indicates a derivative with respect to 7.. In the gauges of Eq.(5), 11V is

expressed as
V== 9
32N

mn

[glmgjvl . gl)g ]g:nnﬂ (7)
On the turning hypersurfaces ¥, and X, all field morenta (11*7,11*) are zero in
the synchronous systeni and the third term in Eq.(6) vanishes, The last term in
Eq.(6) also vanishes if the hypersurfaces ¥; and Ly are compact but may receive
contributions from infinity otherwise. In this case, we shall assume that turning hy-
persurfaces merge at infinity sufficiently fast so that the Euclidean action S(¥2,X;)
does not get contributions from the last term in Eq.(6). The classical Minkowskian
solution in the space-time My containing ¥y can be represented quantum mechani-
cally by a “forward wave™ solution W(y,,.9q) of the Wheeler-De Witt Eq.(1) in the
Hamilton-Jacoby fumit. At X, this wave function enters, in the WKB limit. the Fu-
clidean region £ and leaves it at X, to penetrate a new Minkowskian space-time My,
The tunneling of W(y,,.0,) through £ engenders in addition to the “forward wave”
solution a time reversed “backward wave™. The inverse transmission coefficient N,
through the harrier measures the ratio of the uorms of the forward waves at ¥, and
Y. For large Ny one may write in the synchronous system

Ny = exp —2(/“”.‘1:) dir+ /”n‘f’:. d'ryl. (8)
&

4

As all surface tenus in Fq.(6) vanish in this system, Eq.(8) can be rewritten in the
coardinate mvariant form

A”() = exXp [2.“;().:], }.:‘1 )]. (9)

Let us examine the case where the Fuclidean manifold £ is static i, the sense
that it admiv. @ Uilling symmetry. We can take advantage of the covariance of
the action S. aad express i in terms of a new “static™ coordinate system, pos ihly
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singular, with momenta everywhere vanishing in €. In this way, momenta in Fq.(8)
get squerzed into the last surface term of Eeq.(6) and one gets

|
Ay = Al[_4_7r. /,‘)k[((')]N)yh /{/”)]'131‘ (10)
b

where At is the Euclidean time needed to span £ i the statie system. The tunneling
amplitude will then '+ computable from this surface term only, even when the static
parametrisation s singular,

3. The tunn ling entropy in de Sitter spacetime topologies

LI AT TN
-

\
A S Il

S’

Figure 3. Lannchog i de Sitter vopology The heavy solid line delineates a0 4-
by prerholord and the tun one o wormdids The Fuehdean domaim & constituted
by a half 4 sphere s debeated by oacdashed hine Phe datted airdle s the turnimg
hypersartaes 1 0

Let s hist allustrate the equivadence implied by Fag(9) of the Fq.(s) and
Faq 010) for the de Sitter spacetiiue which is the classical solution of pure gravity in
the presence of o conmological constant Ao I the present forinabisim, A should be
viewed as the Tagrangian density of the matter action o . (2): it plavs the role
of aomatter distriboted with vest enerpy density @\ and obeying the equation of
state o < powhiere pis i (negativey pressure Phe full Minkowskian solution s the
t hy perbolord thiecty which can be parametiized by the minisuperspace metrie

;
det it @tdatt a0 oy eonh — (tn
'y

where v o (382 N)0 The hypersirface 7 - 0055 a0 turniug, hypersurlace connecting
the hyperboioid to the Enchidean solution consisting of the 4-sphere which can be
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described in a synclironous system by replacing in Eq.(11) 7 by —i7.. This yields the
Euclidean scale factor

r
Qe = 1} COS —, (12)
L3

The hall-. Jhere delimited by —7ri/2 < 7, < 0 has another turning point at,
say, the south pole 7, = —rry/2 where a, = 07 in the above synchronous system
the space integral of the momenta in a 7¢ = constant hypersnrface vanishes in the
vicinity of this point and so does the third term in Eq.(6). The half-sphere considered
constitute the domain £ through which a “wormhole” at, say, ¢, = 0 is connected by
tunneling to the de Sitter spacetime. The inverse transinission cocfficient Ny can be
straightforwardly computed from Eq.(8) using Eq.(7) and one gets

3 +ury 2 ; 2

No = exp | = o (S22 dr| = explrrd) = exp(Af ) (13)
2 dr,
—1ryf2

where A is the area of thie event Lorizon,

The significance of this result is best appreciated when the 4-sphere is de-
seribed in static coordinates:

dst = (I - 1'1'/1",2,)([1’3 + (1~ 1'2/7";!)* Vdr? + 12002, [14)

In this static frame, all momenta vanish everywhere on the sphere and the tunneling
is expressible by the surface term Ee.(10) only where the radial integration is carried
from = 0 to r = r,. The Fuclidean time is periodic with period 77! = 20y,
Using Fe.(10) with At, = (1/2)T 7' = 7y, one recovers the result ¥q.(12).

It is now vasy to verify that the equality between the inverse transmission
cacfficient and exp(A/4) is maintained when the de Sitter spacetine is nerturbed by
spherically symmetric static matter distributions?. This establishes 11 validity of
Fq.(13) for these generalized de Sitter spacetimes,

Let us tentatively take bonndary conditions in field space by assigning pure
forward waves at the wormhole turning point. The probability of finding an expand
ing generalized de Sitter spacetime for & corresponding worimhole state is then Ny,
since i the classical limit interferences between spaces evolving forward or hackward
in time st be negligible, Assuming that all wormbole states are equally probable,
we get from B (13) that the relative probability of finding two maiter configurations

» Iu fact, any pomt on the halb-sphere can be taken as a turning hypersarface

N
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in the gencralized de Sitter spacetimes is

N

- (15)
N

AL A@)
)

=exp[—4—-~-————

Integrating the constraint equation H = 0 over a static domain of the Minkowskian
spacetime one gets

1 TA
-1—6; / LV —gR dBI + ffmau” + —4—' =0 (16)

where H pagter is the total matter energy. The variation of Eq.(16) yields

é
_TA = IT—léxllnlul(('T (17)

where A labels the ezplicit dependence of Hypqurer on all other (non gravitational)
“external” parameters. Bq.(17) is the differential Killing identity of reference 13,

It now follows from Eq.(15) and (17) that inatter configurations with necigh-
houring energies in a static patch of i generalized de Sitter spacetime would be
Boltzmann distributed at the global temperature 7 provided our ignorance about
wormhole states allows to take them to be equally probable. Thus the tempera-
ture of the static patch is 7 and therefore 15q.(17) also implies that A/4 is (up to an
intcgration constant Cyesiiter) the entropy of spacctime and that the latter is iu ther-
mal equilibriumm with the surrounding matter. As the entropy must be an intrinsie
property of spacetime, not only is equilibriumn a consequence of the chosen bound-
ary conditions in field space but the converse is also true: the temperature obtained
directly from Ea.(17) with the spacetime entropy identified as A/4 4 Cuesirrer must
agree at equilibrium with the therinal distribution generated from the ficld boundary

conditions, This justifies a posteriori the above choice of boundary conditions .

The tunneling approach to the horizon entropy and temperature!? used here
differs from the analysis based ¢ the Fuelidean periodicity of Green’s functions® in
two respects. On the one hand. he present approach yields the thermal spectrum,
and then the entropy, from the buckreaction ol the thermal matter on the gravitational
field, in contradislinction to the Green's function approach. On the other hand
however, the thermal matter considered here is taken in the classical limit while the
Green's lunction inethod describes genuine quantum radiation. Both methods fall
short of a fully consistent quantwin treatment of the backreaction. But as stated
in the introduction the present approach may uncover from the hidden side of the
barrier a density of siate buildiug the full entropy. Unfortunately, for the de Sitter
spacetimes considered above, the hidden sideis a we. nhole whose deseription cannot

t up to changes which would not alter the probability ratios in the large Ny liait.
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be achieved in our semi-classical approach. Hence, for de Sitter spacetimes, we do
not gain at this stage any information on the integration constant Caesiree, Which
measures the density of states left when the full spacetime reduces to the (planckian)
wormhole. As we shall now sec the situation appears quite different in the case of

black hole geometries,
4. The tunneling entropy of black holes

A Schwarzschild static patch of an eternal black hole of mass myg is described
by the metric

2 2 .
ds? = (1 — 220y de? — (1 — 2291 o - p2 g2, (18)
T T

Figure 4. The Kruskal representation of a black hole, eventually surronnded by
static matter. The heavy solid line delineates a 4-hyperboloid and the thin one a
wormhole. The Euclidean domain £ constituted by a half 4-sphere is delineated by
a dashed line. The dotted cirele is the turning hypersurface 7 - (.

Surrounding the hlack hole by static matter generalizes Kq.(18) to
ds? = goalr) dt? — g (rYydr? - p2dQ? (19)

where in absence of outer horizon one has

2M

=y oo goo(r) = !ll—ll(r) —~ 1 -
-

e e — e
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Here M =M () is the total mass and

M(r)=1mo + /rln:za(z)d:

2mno
g () = 1 - 2 (21)
r
aM(r T
Goo(r) = (1 - ‘(1 )) eXp | - /(” 4 p)8rzgn(z)dz

The metiic Iq.(19) can be extended to the four quadrants of a Kruskal space
and we choose identical matter distributions in the two Schwartzschild patehes to keep
o twofold symmetry around the Kruskal time axis. The Kruskal diagram is depicted
in Fig.4 where we have also indicated its Buelidean extension 7, == 71" resulting from
the analytic continualion of the static metrie 15q.(19) to the periodic time #, = 77,

0] r

Figure 5. Buclidean black hole sirrounded by statie matter. Fach point s a
2sphiere and the eireles span the Baclidean time . The heavy solid T is Uhe

turning hy persurfaer deseribed in Kruskal tiine by 7' - 0.

The Buclidean periodicity is

T G[!/(l(l('l)uu)]“I(ZHI“)] g - ()
or from kq.(21)
. 1 | -
Lo S (o 4 p)iregud | (23)

2;nu
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The Euclidean extension of the black hole surrounded by static matter is rep-
resented in Fig.5. In contradistinetion to the de Sitter case, there is clearly no WKB
tunneling from a wormhbole to a black hole because of the mismatch in topologies.
Onc is therefore lead to investigate possible tunnelings between two black holes ge-
ometries (B.H.), and (B.H.); constituled respectively by black holes of mass my
and m (m > mg) surrounded by matter. ‘The Euclidean sections of (B.JI.); and
(B.H.)9, depicted in Fig.6, are engendered by a rotation of half a Euclidean period
of the hypersucfaces ay and ay labeled by 7' = 0 in their Kruskal diagrams, These
are turning hypersurfaces along which Minkowskian and Euclidean black holes meet.
We nuvw search for two black holes such that ay and ay are also the boundaries of an
Buclidean solution &£ of the Buclidean equations of motion through which tunueling
can take place from one Minkowskian "lack hole Lo the other, A necessary condition
for this to happen is that the total mass . of the two black hole-matter systems and
their Euclidean period 771 be the same, so that the turning hypersurfaces o, and
iy of the two geotietries merge at spatial infinity.

Figure 6.8lack bole tunneling. "The figure repres, nts the Enclidean sections of the
two black hole geonsetries (1211 and (B.1H )y, "The (B0}, peonietry is depicted
by thick lines and the (B.1.)s geouetry by thin lines in the region where it differs
from the first. The curve ay represents a tuening hypersurface of (H‘.Hv)h to be
identified with ¥y, The curve ug represents a turning hypersurface of (17 1 jy. The
curve afy represeuts a bypersurface which Jays in the intersection of the Fuelidean
seclions of (BL)) and (1.1 ) and tends to ¥y in the Timit g - 0.

—— ————
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Let us choose identical matter distributions outside a radius 7o = 2m +17. 5
is positive and such that the mass of the matter between the horizon and r. is 0
for (B.H.)2 and thus m — myp for (B.H.)1. Keeping m and the matter distribution
outside 7. fixed, we now decrease mg towards (. From Eq.(23), in order to keep the
Euclidean period 7 7! constant for (B.H.);, we have also to decrease 1 towards 0. As
n — 0 the mass m —mg surrounding the infinitesimal mass mgq in (B.[1.); approaches
its own Schwartzschild radius. It then follows from Eq.(21) that geo(r) tends to zero
for the whole interval 2my < r < 2m. In other words any frequency stemming from
the neighbourhood of the small mass hole is infinitely redshifted by the matter in
that interval, as encoded in the damping exponentials in Eq.(21) and (23).

It is clear, from the static coordinate description Eq.(19) extended to Bu-
clidcan times ¢, - it, that the Fuclidean sections of (B.1.); aud (13.11.)3 coincida
for 7 > 2m + 5 but, wlhile for (B.11.); the Euclidean section terminates at r = 2,
(B.L); presents an extra “needle” in the region 2my < r < 2m whose 4-volune is
vanishingly small when y — 0. As we now show, this is where tunueling between

(B.H.); and (B.11.)2 occurs,

To this effect, following the notations of section 2, we identify at finite 3
the first, turning hypersurface 3y through which tunneling lakes place with «; and
consider instead of i second turning hypersurface ¥y a hypersurface aly which lies in
the Kuclidean seetion of both (B.H)y and (B.01.)2; thus 7 s greater than 2m 4y
everywhere on ¢y, When 7 — 0, we can choose «fy arbitrartly close to ay. Que can
then prove' that all pravivational momenta vanish in this linit on @} in asynchironous
systent, We may then identify of with g, The region € is thus conlained in the
needle 2emy << r <0 24 5. Beeause of the Kruskal twolold synnnetry ay is mapped
on' s itsell by a Buclidean time rotation of hall a period and thus £ spans only half
the needle 4-volunie, From Beq.(9), we learn that the inverse transmission coelficient
Ny is simply the exponential of the total Buelidean action of the needle. Althou, I
the Jimiting 4-voluiue of the needle vanishes, the action will turn out to he finite, It
is in fact computable as the difference between the Euclidean actions of the two black
holes cut off at the arbitravy cadius o greater than 2in becanse '
and the two actions comeide for all » 5 2.

< lwo peomelries

We thus write
wenf QB L) oUBH. .
Ny = expfslilh gl M, (21)
To evalnate these actions we lake advantage of the covariance to express them in

terms of the stalic coordinate system Bq.(19) with ¢ = i, Using Fq.(10) and (22)

n.n

and the fact that the integrand in Bq.(10) is the same at e, for ! and for

SL('U.H.).,’ we gol,

Ny~ exa [dmn® — Anmd(y — 0)] (25)

or, as g vanishes in the lmit,
Ny =exp A4 (26)

where A = 16mm? is the area of the event horizon of the black hole.
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We have thus lcarned that black holes are related by quantum tunncling to
another classical solution for gravity and imatter, namely to a “germ black hole”
of infinitesimal mass determining the spacetime topology surrounded by a staiic
distribution of matter characterized by a vanishing geo(r). This domain of space-time
is characterized by a limiting light-like Killing vector. When the space-timce geometry
presents a 4-domain endowed with such a Killing vector, we shall call the domain
an “achronon”. All spherically symmetric achronon configurations will exhibit an
infinite time dilation in the Schwarzschild time t, or equivalently massless modes
emitted by the achronon are infinitely redschifted. Classically, the achronon has the
“frozen” appearance of a collapse at infinite Schwarzschild time. The difference is
that it is also frozen in space-time.

To see that achronons can indeed be constructed, at least in a phenomenolog-
ical fluid model, we shall build a shell model with the required properties.

Let us consider a static spherically symumetric distribution of matter sur-
rounded by an extended shell comprised between two radii 7, and ), We define

ra ry h
6= /ﬂ([:{u(ll‘, Do = /])g_([lll/z(h‘, = /]llyll{?'dr (27)

Ta Va ro
where pp = =T and py = —'I"Z'. Assuniing py = 0, one may perform the thin shell

limit 7y = v, = I in these integrals using 15q.(21) and the Bianchi identity

| Brrdp, +2M () /e ] ,
pa=pe=glot "')‘T::z_/w(ﬁ(r + 5o (28)

One Lhen gets

dr ke = (1 —2m JR)YY — (1 =2/ 10)? (29)
R L—m /R
Sr iy LIALI LIVAUN N (30)
(1 22/ (1= 2m[It)2

where e and m™ are the values of M () respectively at ry and vy and sy = —m ™
is thus the mass of the shelll Eq.(29) and (30) aze the standard result'®, As the
radins 1 approaches 2m, these solutions become physically meaningless when pg be-
comes greater than & Lhis violates the “dominant energy condition™®, implying the
existence of observers for which the momentum flow of the classicar matter becomes
spacelike; in fact, the shell is mechanically unstable even befors this condition is
violated!S.

The divergence of pg when B —» 2 appears in Fe.(30) because of the vanish-
g denominator in Fe.(28), Bq.(30) depends however crucially on the radial pressure
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being zero inside the shell. Relaxing this condition it is possible to avoid all singular-
ities of the stress tensor as B — 2m by requiring p, inside the shell to satisfy, before
performing the thin shell limit,

47”‘2])1 + M:—T-)- = 0, (31)

This solution is unsatisfactory if the (extended) shell sits in an arbitrary background
because of the finite discontinuity of the radial pressure across the shell boundaries
which would lead to singularities in pg. We may ensure continuity of the radial
pressure by immersing the shell in suitable left and right backgrounds. To avoid
reintroducing stress divergences when #¥ approaches 2M (%) these should satisfy (o +
p1) = 0 at the shell boundar .. One can now perform the thin shell limit. The finite
discontinuity of py(r) at r — f leads now to

fa G -0 (32)

instead of Fq.(30), while & is still given by Iq.(29). The domiuant energy condition
is now satisfied everywhere and provided the background is smooth enough in the
neighbourhood of the shell; no stress divergences will appear when il approaches
the Schwarszschild radius. Performing the explicit integration over the shell in the
exponential term i Fq.(21), one gels for ggg{r)in the region 0 <7 < 2,

o

R
) [[ - ] exp ~A'R/(rr + py 8wy dzy. (33)

) = (] --
goulr) = ( ¢ 2m-

M ()

?
r

Here the radiug I{ of the shell is taken at B = 2m 4y where 1y is a positive infinites
iinal and the symbol R means that the integral is carried over the regular matter
contribution only. Clearly, ggo(r) = O(y) for 0 < r < Zin, # arbitrary and the above
matter distribution constitutes indeed an achronon.

We now relate in general the tunneling as encoded by F.(26) to the black hole
entropy. This can be done 1ollowing the analysis of the de Sitter case. Assuine all
states formed by achronons of mass 1 surrounded by matter contigurations of mass
M — 1, M fixed, to be equally probable. This amounts here to assnme the validity
of the microcanonieal ensemble as achronons can be viewed just as lumps of ordinary
matter taken out from the surrouudings. The relative probability of finding {wo black
hole geometries for a given total mass M is then given by Eq.(15) with A and A1)
identified here with the black hole arcas. The differential Killing identity Eq.(17)
follows as before from the integrated constraint equation, the only difference being,
in general an additional term 8M on the right hand side arising from a surface term
al. spatial infinity. As M is kept fixed, this term plays no role and Fq.(17) remains
valid as such. Therefore, in analogy with the de Sitter case, matter configurations
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with neighbouring energies m a static Schwartszchild pateh of an cternal black hole
surrounded by matter have a Boltzmann distribution at a global temperature 7.
The latter now coincides with the local temperature at spatial infinity. §4/4 is the
differential entropy of the hole and A/4 is the amount of culropy transferable to
matter reversibly, ‘The total black hole entropy is

S=AMA+Cqa (34)

where exp C_pr. measures the nuimher of quantum states of a residual planckian black
hole. The boundary condition in field space at equilibrium are such that the wave
functional of an cternal black hole has a small amplitude describing an achronon con-
figuration whose relative weight with respect to the classical black hole configuration
is of order exp —(A/8).

5. From achronon to planckons

We now discuss the nature and the significance of (570 The entropy A /4
whick can be exchanged reversibly from a black hole Lo ordinary matter was rederived
in tne preceding section from the existence of a “potential barrier™ between a black

hole of mass 1 and an achronon of the same mass. This was done in the context of

cternal black holes admitting a Wruskal twofold symmietry, so that there are in fact
two achronons imbedded in two causally disconnected static spaces. Within each
space black hole-achronon states ave in thermal equilibrin with their surroundiugs.
We are therefore led to picture in such a space a quantum black heole vigenstate |
in the seni-classical it as o quantam superposition of two coliercut (normalized)
states, |H 1) and JA) representing respectively a classical black hole and a classieal
achronon. The relative weight of the two states is approximately, up to a phase.
exp(—A/8) . It follows from detailed balance at equilibrium between radiated mat
ter and the black hole that the sioe saperposition shoubd hold for a the bladk Lol
who would ouly emit (and not recetve) thermal radiation at the equilibrinm temper
ature, As a black hole Tormed from collapse indecd emits such a thermal tluy we

infer that a collapsing black hole is @ wave packet tormed from a superposition of

eigenstates [} which confain an achronon component with the same weight as in
thermal equilibrivm, We thus write

|y > B + exp(— A8} A). (35)

To a classical single black hole configuration one miy associate many distinet
classical achronon configurations. In the shell model, for instance, there are intinitely
wany distinet classical matter configurations of the same total mass ne. The arguinent
is however much more general and infinite guantwin degeneracy of the achronon is a
Adirect consequence of the infinite time dilation. Tudeed, the Haniltonian 1,000, 15
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of the form

]Imnltcr = /\/gﬂﬂl\,(¢asgij111(l,)dnT' (36)

and all its eigenvalues are squashed towards zero by the Schewvarzschild time dilation

factor \/foo, thus generating an infinite nunber of orthogonal zero energy modes on
Yoo, g B

top of the original achronon.

The infinity of zero energy mocles around any background implies an infinite
degeneracy of achronons of given inass and thus an infinity of distinet quantum black
hole states of the saime mass differing by the achronon compounent of their wave
function. This infinite degeneracy of the quantum black hole provides the reservoir
from which are taken the finite number of “surface” quantum states exp A/4 counted
by the area entropy A/4 transferable reversibly to outside matter,

Sxcept for providing a rational for the Jarge but finite testable entropy of
the black hole, achronons do not modily the hehaviour of large macroscopie hlack
holes. However when their mass is reduced by evaporation and approaches the Planck
mass the barrier disappears and quantum superposition rompletely mixes the two
components. Of course, this means that both the description in terms of semiclassical
configurations and of tunneling disappears. What remains however as a consequence
of unitarity, is the infiuity of distinet orthogonal gquantum states available which have
no counterpart in the finite number of decayed states, The quantiin black hole has
become a planckon', that is a Planckian mass object with infinite degeneracy, In
ters of 19q.(34), this ineans that in & asymptotically lat background, the integration
constant of the black hole entropy Oy is infinite, As discussed in the introduetion,
this micans that in such a background a generie planckon sannat decay nor he formed
in a finite time,

This conclusion however is contingent upon the validity, at the qualitative
level, of our semi classical approach, The main question is whether or not the quan-
tumn backreaction of the matter on the metric removes the infinite degeneracy. An-
swering it requires further analysis,

Finally, it is of interest to note that the planckon solution to the unitarity
problem posed by the evaporating black hole would have, at a fundamental level,
far reaching implications on the spectrum of quantuny gravity. The opening at the
Planck size of an infinite number of states, an unavoidable consequence of the ex-
istence of pianckons, miay appear as a horrendous complication which could make
quantum gravity definitely unmanageable hut hopefully the corverse may he true,
Indeed planckons should make quantum gravity ultraviolet finite, The Hilbert space
of physical states available to macroscopic observer mnst be orthogonai to the infinite
set of states deseribing Planckian bound states, Their wave function at Planckiau
scales where planckon conligurations are concentrated are therefore expected to be
varishingly small. In this way, planckons would provide the required short distanee
cut-off for a consist nt field theoretic deseription of quantum gravity within our uni-
verse while leaving e largest part of its information content hidden at the Planck
H(‘al(f.
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An operational formulation of quantum gravity applicable within our universe

and based on conventional four dimensional gravity might thus well be within reach.
Nevertheless, the sudden widening of the spectrum of physical states at the Planck
scale and the relative scarcity of states which describe large distance physics suggest
that a fully consistent theory cannot be formulated in terms of only long range
quantum fields (including the metric), and a larger scheme may be required to cope
with the infinite amount of information relegated to the Planck scale.
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Black Holes and Information Loss in 2D Dilaton Gravity
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ABSTRACT

The theory of dilaton gravity coupled to conformal matter proposced by Callan et
al, is quantized. An attelapt is made to interpret the resulting picture of quantum
effects in terms of Hawking radiation, The question of information loss is also
addressed briefly.

There are three main responses to Hawking’s original observation:! that the
semi-classical calculation of quantum effects around a black hole, led to its evapo-
ration via thermal radiation, and the corresponding loss of information that went
into the hole.

) Pure states evolve into inixed states. This is Hawking's position. ?

b) The black hole does not evaporat= completely. A remnant which stores all
the information is left behind. This is the position advocated by Aharanov, Casher
and Nussinov.?

c¢) The radiation is not exactly thermal. There are subtle correlatious which
code the information. This is the position first advocated by Paye!.

The first of these entails a radical reformulation of quantum mechanics and
in particular one looses the connecticn between symmetry and conservation laws.®
One should probebly show that more conservative options are completely ruled out
before accepting such a radical revision of the foundations of quantum mechanics.
The second has the problem that it leads to a an infinite degeneracy cf states. The
third alternative is the most conservative but it is yet to be demonstrated even in
a toy model.

The theory of dilaton gravity coupled to conformal matter proposed by
Callan, Giddings, Harvey, and Strominger® (CGHS) is in fact a toy miodel in two
dimensions within which one may hope to gain some understanding of these ssucs.
In this talk I'm going to discuss the quantization of the CGHS thcory and its phys-
ical implications. This talk is based on the papers of refecence 7. Similar work has
been done by Bilal and Callap®. (The discussion of ADM and Bordi masses in the
last few paragraphs of this paper has been revised in accordance with reference 11.)

The CGHS action is given by

S= [doy=gle R+ (VH) + 4N 1N(Vf”] (1
= [ 4 VR R (TP 4 )= 3 VI )

19N
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In the above G is the 2d metric, R is its curvature scalar, ¢ is the dilaton and the ff
are N scalar matter fields.
The quantum field theory of this classical action may be defined as

z =/]dy!g(d¢]z[df]g REPYR) @)
Vol. Diff) '

Now let us gauge fix to the conformal gauge g = ¢?#§ and rewrite the measures
with respect to the fiducial metric §. Following the work of David and of Distler
and Kawai®, we may expect the action to get renormalized, except that unlike in
their case the renormalization will be dilaton dependent (since the coupling is ¢2¢).
Thus in general we may expect the gauge fixed path integral to be written as

Z= [IUXelaflp(llde)se XU IS, ©

where 1 ]
11X,8] = -7 J[ V=358 GudaX 0 X" + RB(X) + T(X)] )

S(b,c,5) is the Fadeev-Popov ghost action, and we have written (4,5) = X#. Notc
that all the measures in Eq. (3) are defined with respect to the 2d metric 5 and
that in particular the measure [¢X#] is derived from the natural metric on the space
NoXull* = J d*o /=35G8 XHEX".

The only a priori restriction arises from the fact that the functional integral
for Z in Eq. (3), must be independent of the fiducial metric §, as is obvious from
the expression Eq. (2) for it. i.e. we must have

<Tyg 4ty >=0, (5)

and < Ty.. + t4— >= 0. The laiter is equivalent to the p equation of motion. In
addition we must have the integrability conditions for the above constraints, i..
that they generate a Virasoro algebra with zero central charge. This requircinent
is equivalent to the condition that the beta-function equations for ¢, @, and T arc
satisfied. Thus we must have,

Buw = Ru+2V50,84 ., (6)
fo = -R+4GP0,80,® — 4VEY 4+ (—N—““—;)l?f +oo (")
Br = -2VLl+4G*8,38,T —4T +..., (8)

where R is the curvature of the metric G. These equations have to be solved under
the boundary conditions that in the weak couplng limit {(¢** << 1) we get, (com-
paring Eq, (4) with the classical CGHS action in the conformal gauge with the
conformal anomaly terin added)

Gy == ~8e™ 2, Gy, =4de ™, G =2k, &= - 4 rp, T= —4)2cHr—?), (9)

The (renormalized) field space metric may be parametrized as,
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ds? = -8 2#(1 + h(¢))dé? + Be2*(1 + To(¢))dpdd + 2(1 + h)dg?, (10)

where k%, and & are O(e?*). If we are going to comsider only O(e?*) cffects then
we should certainly set & to zero. But even if we consider the renormalization
functions & and % to all orders, it is consistent to limit ourselves to the class of
quantum versions of the C(AHS theory which have & = 0, provided that we satisfy
the beta function equations. This corresponds to confining ourselves to theories in
which the field space curvature R = 0. In thiy case we can transform this metric
to Minkowski form. Putting y = p— xle=?* + 2 [dée~2h(¢) and z = [doP(¢), P(4) =
e=2#{(1 + R + ne?®(1 + W]}, we have ds? = ~2dz® + 2xdy®. Then demanding that we
recover the CGHS ¢ given in Eq. (9) in the weak coupling limit we find the unique
solution & = sy from the first beta function equation, and substituting in the second
beta function equation we get x = #5&, The third beta function equation $ogether
with the boundary condition that we get the CGHS value for T in the weak coupling
limit then gives T = —4a%e~ %=1,

Introducing rescaled fields, X = 2,/z, Y = /2[[y, we then have the fune-
tional integral,

Z = / [dX)[aY )[df|[db][dc]et 51 Y1+ iSemen (11)

where,

5= 41—“ J Po(FO XO-X £ 0, YO Y + 3 0, £0_f + N2 FVIRXEY) (12)
i

Now the transformation from ¢ to X is singular if P(¢) has a zero.But there

is a whole class of functions & and h for which this is not the case (the simplest
cxample being # = 0,k == —§e?* 80 that in Eq. 11) the integration range goes over
the whole real line and we have (by slightly generalizing the arguuients given in
reference 10) an exact conformal field theory as is required by the general covariance
of the original theory. The equations of motion for X,Y coming from Eq. {12) can
be solved in terms of four arbitrary chiral functions. Indeed they arc the same
solutions as the classical CGHS ones the quantum anomalies being hidden in the
relation between XY and ¢,p. By a coordinate choice two of the functions can
be sct to zero so that in this conformal frame(which I will call the Kruskal frame)
one has X = -Y = ~‘/?1[:(u ~ Mote~) where u = u(ot) 4 u—(0c™). To be explicit
consider the case d) discussed at the end of the last section (h =0, & = -%¢?); then

X= 2\/%fd¢c-“|1+§e“]i = /2[x] f dg[1+ e **} and ¥ = \/u—u|p+\/%e*“~\/217|¢.

In the weak coupling limit (s** << 1) we have frum the solution for X,Y and
the above, the classical solution e~?* = ¢2¢ = 4 — Mo*o~, which cxhibits the classical
(black hole type) singularity on the curve where the right hand side vanishes, But
the singularity is in the strong coupling region where we have ic use the sivong
CO(L‘lpling expansion (from the second line of the above equation for X) X ~ /2jx]¢ -
o)




Then we have from the solution for X,Y, ¢ ~ x~(u — A%etc™), and p ~
le-2+7'(w="¢%7) The metric (¢??) is clearly non-singular at the classical singularity.

The uy are fixed in terms of the ghost and f-matter stress tensors by the
constraints Eq. (3), (for a detailed discussion see the third paper of reference 2). To
proceed onc has to make an assumption about these stress tensors. In order to be as
close as possible to the original Hawking calculation®, I assurue that in a preferred
coordinate system which is asymptotically Minkowski (which is the natural frame
to choose at null past infinity ) the expectation value of the matter stress tensor
is zero. This still leaves an ambiguity in the ghost influx. Choosing the latter to be
constant and equal for both left and right movers, and transforming to the Kruskal
frame by taking into account the conformal anomaly (Schwartz derivative term),
and using the constraint equations, we get vy = ay + byo* —a(ot - o )0(ct ~ o) -
-zf%log lo¥], v =a- +bc™ — ﬁ-log lo=|, where N = N 4 a — 26. Herc a is an arbitrary
parameter characterizing the ghost influx. Perhaps the most natural choice is to put
a = 26 and we hall do so in the following. With a = b = 0 ore has the quantum analog
of the static black hole solutions of dilaton gravity. The step function term comes
from assuming (as in CGHS®) that the matter falls in the form of a shock wave. 1t
is trivial to gencralize this to more general configurations of infalling matter. So
ux =b=10, a# 0 corn .ponds to a dynamical solution describing collapse to a black
hole and Hawking radiation.

One may now derive'? an expression for the ADM and Bondi masses of these
configurations following an argument of Regge and Teitelboim!?.

1
Eapy = J;—l[ig'(a)AY—AY’]TW. (13)

In the above g reflects the freedom in the choice of conformal frame and is
zero in the Kruskal frame.

For the static solutions one finds from this that the ADM mass is zcro. Tn
the case of the dynamic solutions one gets an ADM mass in these coordinates that
is cqual to the encrgy of the infalling matter My = Aac}. Thus the ADM mass in fact
satisfics a positive energy theorem. However the frame appropriate to an obscrver
outside the horizon is related to the frame o by 7 = 12" 0= = —1c=%" — . In
this frame one gets for the dynamical solution,

Bavw=Ma+ ool (14 302 o _ 4 20 (11)

Thus we have an inficite value for the energy in these coordinales. It should
be noted that the corresponding classical solution has a finite mass equal to the
incoming matter energy. Thus the infinite value is a consequcnce of the quantum
radiation.

One may now calculate the Bondi mass (i.e. the mass left over after radiation
for a light cone time o~) to get
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32Ty Ny _ A
) 24 (14 2¢7%7)

N a - N A
_.[_-2—4111(1+Xe )—24(1+%e~m—)

N
Bgonsi(3) = Mo~ ﬁlﬂ(l +

(15)
For any finite value of 7 one gets an infinite value reflecting the fact that the
ADM mass is infinite. However at - — oo one finds that the energy left behind is
equal to the incoming matter energy Mo. This somewhat peculiar conclusion seems
to be forced upon us by the conformal invariance of the two dimensional thcory.
Since the collapsing mass M, is left behind it might seem that the modecl supports
the remnant scenario’. However this is the total mass of the original collapsing
matter and the bath of radiation was there ab initio. Thus it is not really possible
to draw any conclusion for a situation that one might obtain in four dimensions,
where one is not forced by conformal invariance to start with an infinite bath of
radiation.
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ABSTRACT

The duality found by Aharonov and Casher for topological phases in the electro-
magnetic field is generalized to an arbitrary linear interaction. This provides a
heuristic principle for obtaining a new solution of the field equations from a known
solution. This is applied to the general relativistic Sagnac phase shift due to the
gravitational field in the interference of mass or energy around a line source that has
angular momentum and the dual phase shilt in the interference of a spin around
a line mass. These topological phases are treated both in the linearized limit of
general relativily and the exact solutions for which the gravitational sources arc
cosmic strings containing torsion and curvature, which do not have a Newtonian
limit,

0. Introduction

As is well known, some of Yakir Aharonov’s most famous contributions con-
cern topological phises due to the electromagnetic ficld. It is therefore fitting on
this occasion of his sixtieth birthday for me to present him with some observations
concerning these phases, which genceralize naturally to the gravitational ficld. In
particular, [ shall examine the duality between the Aharonov-Bohm (AB) phase [1)
and the phasc shift in the interference of a magnetic moment in an clectric field [2)
which was found by Aharonov and Casher (AC) [3]. I shall show, by mcans of the
lincarized limit and an exact solution of the gravitational ficld equations, that both
thesc phases have gravitational analogs and they satisfy this duality.

In section 1, T shall briefly summarize the phase shifts in the interference
of a charge and a magnetic dipole (at low energies) due to the electromagnetic
field. These phase shifts reveal, respectively, U(1) and SU(2) gauge field aspects of
the cleetromagnetic field. But these two aspects are not independent: The st7(2)
connection which gives the dipole phase shift depends on the electric and magnctic
fields and as such are derived from the clectromagnetic connection that gives the
U(1) AB phase shift. It is nevertheless amusing to see a charged particle with a
magnetic moment, such as an clectron, interacting with an electromagnetic field as
if it is a U(i) x SU(2) gauge ficld. Two topological phase shifts due to eiectric and
manetic fields corresponding to two U(1) subgroups of SU/(2) will be reviewed. The
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duality between one of these and the AB phase, found by AC, will be gencralized
to an arbitrary interaction in scction 2. I shall formulate a duality principle which
states that any two dual phascs are equal under certain conditions.

The gravitational phase shifts, obtained in section 3, are special cases of the
phase shifts obtained previously (4, 5] due to the coupling of the mass and spin to
the gravitational field. The key to the analogy with the electromagnetic phase shifts
is that the mass or encrgy plays the role of the electric charge and spin the role of
the magnetic dipole in the electromagnetic field, The gravitational phase shifts arc
the same as due to the phase shifts of a Paincarc gauge field. The translational and
Lorentz aspects of the Poincare group are respectively analogous to the U(1) and
SU(2) aspects of the electromagnectic ficld, mentioned above.

If gravity contains torsion, as will be assumed here, the connection, which
gives the phase shift of the spin, is independent of the metric or the vierbein, which
gives the phase shift duc to the mass or energy-momentum. Therefore, these two
aspects arc then complementary, unlike in the electromagnctic case in which the
SU(2) connccetion depends on the U(1) connection as mentioned carlier. The clectro-
magnetic field and its sources of course must satisfy the Maxwell’s equations. 1t is
well known that the solenoid which produces the AB phase shift is a solution. Sini-
ilarly, the gravitational ficld and its sources must satisfy Einstein’s field equations
or a suitable generalization of it to include torsion. Fortunately, an exact solution
corresponding to a spinning cosinic string with angular momentum and mass, which
is the analog of the solenoid with a conxial line charge in the electromagnetic casc,
can be obtained everywhere including the interior of the string.

There is a topological general relativistic Sagnac phase [4] which depends
on the energy of a particle outside the string and the flux of torsion inside the
string produced by its spin. This is analogous to the AD phase. There is another
topological phase which depends on the spin of the particle and the flux of enrvature
inside the string, produced by its mass. This is the dual of the former phase. I shall
show that this pair of dual phases satisfy the duality principle formulated in section

2.

1. Topological and Geometrical Phases Due to the Electromagnetic Field

For simplicity, consider the non relativistic Hamiltonian of a charged particle
in an electromagnetic field

— 1 2
= oop~eA) +eds, (1.1)

where e and m are the charge and mass of the particle and A, = (4, 4;) = (Aq, - A')
is the clectromagnetic potential representing the 7(1) councction due to this field*.

* Units in which the velocity of light ¢ = 1 will be used throughout,
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As is well known, (1.1) predicts the Aharonov- Bohm (AB) effect {1]. This is the
clectromagnetic phase difference between two interfering coherent beams which are
entirely in a multiply connceted region. in w'ich the ficid strength F,, is zero. The
phase factor that determines the clectromagnetic shift in the interfering fringes is

P = Cxp(—%f Apdzh), (1.2)
(&)

where the closed curve C passes through the iwo interfering wave functions, and
encloses a region in which the field strength is non zero. Consequently, this phase
shift is constant as the beams are varied in the outside region in which the field
strength is zero, which makes this effect topological. Conversely, the experimental
observation of this phase shift may be used to infer that ihe electromagnetic field
is a (1) gauge ficld [6,7].

Consider now the interaction of a neutral magnetic dipole, such as a neutron,
with the electromagnetic ficld which at low energies is described by the Hamiltonian
(2,3,8,9)

1
e (U 7A* S + 94,5, (1.3)

where 4,F = (Ae*, A%) = (= B*, i 199) in terms of the clectric field E and the magnetic
field B, Sy, k = 1,2,3 are the spin compoucnts which generate the SU(2) spin group.
For a spin | particle, the magnetic moment = 3. This interaction is like that of
an isospin with an 5U(2) Yang-Mills ficld (8,9,10).

The phase shift due to both clectric and magnetic ficlds, in the interforence
of a neutral dipole such as w neutron, was obtained by meaus of an explicit plane
wave solution {2]. This result, of course, applics also to the more general situation
when the interfering wave functions are locally approximate plane waves so that
the WKI approximation is valid, Hence, the phase shift is determined by the non
abelian phase factor .

Oc = l’cxp(~%}{ Au*Spds), (1.4)
c

where P denotes path ordering, and € is a closed curve consisting of unperturbed
trajectory {8]. Hence, @¢ is an clement of sU(2), aud this phase shift is like the
phase shift due to an SU(2) gauge ficld [5,6,11].

The special ase when the two waves nterfere around a line charge was
considered by AC [3]. In this case, A* = 0 and the clectric ficld £ and therefore 4;* =
i BY fall off inversely as the distance from the line charge. Tt follows immediately
from (1.4) that, if the spin is polarized parallel to the line charge, then this phase
shift is topological in the sense thal it does not change when the curve ¢ storounding
the line chiarge is deformed, However, the Yung-Mills ficld strength #%, ot 4,* is non
vanishing outside the line charge, which makes this effect fundamentally different
from the AD effect in which the clectromagnetic field strength F,, = 0 along the
beams. But if the line charge is in the 3-direction then 19, = 0. That is the ficld
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strength corresponding to the U(1) subgroup of the spin SU(2) generated by Sy is
zero. So, for this subgroup, this phase shift is like the AB effect.

Another topological phase shift experienced by the dipole is the following:
The wave packet of a neutron or an atom is split into two coherent wave packets,
one of which enters a cylindrical solenoid. The homogeneous magnetic field of the
solenoid is then turned on und is then turned off before the wave packet leaves the
solenoid. Then there is a phase shift even though there is no force acting on the
neutron. This phase shift, which is casily obtained from (1.4), is due to A* = —B*.
Hence, this phase shift is due to the scalar potential of the gauge field of the v(1)
subgroup of the spin SU(2) group generated by the comuponent of § in the direction
of B. At the suggestion of Zeilinger [12] and the author [8] this experiment was
performed for neutrons [13].

The general case of the phase shifts for a particle that has charge and mag-
netic moment interacting with an electromagnetic field was studied before [8,9].
I shall restrict here, for simplicity, the special case of the particle being a Dirac
electron with “g-fuctor” being two. Its Hamiltonian, at low energies in the inertial
frame of the laboratory, is

1

2m

1 ,
I =—{(p—cA- 57’A"S.)’+em+7'Au"Sk. (1.5)
This Hamiltonian is like as if the electron is interacting with a SU(2) x /(1) gruge
field represented by the gauge potentials A* and A, Note, however, the factor § in
front of A* compared to (1.3). This is due to the Thomas precession undergone by

the clectron when it aceclerates in the electrie field {2,9]).

2. The Duality of AC and Its Generalization

The major new contribution of AC, which is not coutained in any earlier
work, is the recognition that the phase shift due to the line charge is “dual” to the
AB cffect due to a solenoid. 1 shall now give a precise stutement of this duality
which would be gencral enough to apply to other interactions as well,

Suppose that an infinite uniform solenoid is situated along the z-axis of
a Cartesian coordinate system. A charge of strength e is taken slowly around
the solenoid along a circle in the ry-plane with its center ab the solenoid, which
is assumed to have negligible cross-section. The solenoid may be regarded as a
magnetized medinm with a constant magnetic moment per unit length equal to M,
say, which is parallel to the :- axis. The AB phase shift acquired by the charge -

cM

i (2.1)

A¢:5/n-dz:
hiJy

where ¥ is a cross-scction of the solenoid, B is the inagnetic field inside the solenoid,
and M = [M|.
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Now, divide the solenoid into slices cach of height 8¢ bonnded by cross-
sections that are parallel to the ry-plane. The magnetic moment of each slice is

=Mt (2.2)

The linearity of Maxwell’s equations imply that the phase shift is linear in the scnse
that (2.1) is the sum of the phase shifts due to the influence of cach slice of the
solenoid on the charge. Cousider a slice whose center is at 2 = Z. Then taking the
charge arourd the circle mentioned above is equivalent to keeping the charge fixed at
z = —Z and taking the slice of magnetic moment 4 = |y} uround the same cirele in the
zy- plane. The phase shifts acquired in both processes are the same. This has been
shown using space-time translation and Galilei invariance of the Lagrangian, for
the special case of charge-dipole interaction [3] and using Lorent invariance for the
general case of an arbitrary interaction 19]. Now do this for each pasrwise interaction
between the charge ¢ and cach slice with magnetic moment . Then, as we account
for all slices from 2 = 42 to £ = —~o, in the new situation, which will be ealled the
dual of the original situation, there are charges from z = —ac to r = +oo along the
z-axis, and the magnetic moment g circles around this line charge. Each charge ¢ is
contained in an interval of height 62, aud may be assumed to be spread uniformly
in that mterval. Therefore,

e = 2B, (2.3)

where A is the charge per unit length. It follows that the magnetic monent which
cireles around this line charge, with its direction parallel to the z-axis, acquires a
phase shift equal to A¢ given by (2.1). From (2.2) and (2.3),

d

<= 24
TR (24)
for these two dual situations. Using (2.2), (2.1) may be rewritten as
Ap o
Ag - e (2.5)

This phase shift may also be independently derived using (1.4) and the electric field
of a line charge obtained by solving Maxwell’s equations.

The above argument may be generalized to the ease when the charge goes
around an arbitcary closed curve r(t) which may or may not enclose the solenoid.
Then relative to one of the above mentioned slices at say 2 = (0,0, 2) this curve is
r(t) - Z. Therefore, in the dual situation the slice with magnetic moment g moves
around the closed curve -r(t) + 2 relative to the charge. So, if the charge is placed
at —Z, the slice goes around the closed curve ~r(t). By doing this for cach pairwise
interaction between the charge and the fixed magnetic moment of each of the slices
into which the solenoid is divided, T obtain the dual situation in which a magunetic
dipole of strength j, and direction parallel to the z-axis, moves around the closed
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curve —r(t) with a linc charge, whosc charge per unit length is A, along the z-axis.
Also, since this interaction is invariant under parity, the samc phase shift is obtained
for the situation obtained by parity transforming about the origin. This corresponds
to the magnetic moment moving around the original curve r(t) traveled by the charge
when in the presence of the solenoid.

Now the statement that the AB phase shift is topological may be expressed
as follows: If the curve r(1) goes around the solenoid n times, n = 0,1,2,3, ..., then
the phase shift acquired by the charge going around this curve is nA¢, independent
of the shape of this curve. (Topology has to do with integers. So, a topological
phase shift should, strictly speaking, be expressed in terms of intcgers.) Then the
curve —r(t), which is the parity transform of the original curve, goes around the
line charge n times in the dual situation also. Therefore, the phase shift acquired
in the dual situation is nA¢, independent of the shape of this curve. Hence, the
latter phase shift is also topological. This may also be seen from the fact that
the cxpressions (2.1) aud (2.5) for tl.se phase shifts are independent of the shape
of the curve traveled by the particle. But notice that the argument above which
establishes the equality of phase chifts in the two situations that are dual to each
other does not assume that the phase shift is topological. It is valid for the phase
shift due tn any intcraction, which may or may not be topological. Also, the above
duality can be gencralized to the casc of the charge moving around a closed curve ¢
and acquiring a phasc in the ficld of . arbitrary distribution of dipoles, each having
the same magnetic moment in both d ection and magnitude. A little thought, by
considering each pairwise interaction of the charge and each divole, shows that in
the dual situation, in which the dipole moves along the parity transformed curve
with the charges in the parity transformed positions of the dipoles of the original
situation, the same phase is acquired by the dipole. Again using the invariance of
this interaction under parity, it is concluded that the same phase shift is obtained
when the dipole travels the original closed curve € with the charges in the positions
of the dipoles in the original situation [9]. This argument may be generalized to an
arbitrary linear interaction, but the interaction needs to be invariant under parity
for the last step to be valid. The equality between the two phases in the two dual
situations will be called the duality principle.

This duality principle enables us to obtain from the known phase shift due
to a line scurce a new phasc shift. Alternatively, if both phase shifts are known
then this principle may be used heuristically to obtain a new solution of the field
equations from the old solution that gave the old phase shift. For example, suppose
we know the magnetic field of a solenoid and the AB phase shift {1] of a charge
due to it, and the phase shift of a magnctic moment due to a general clectric field
[2]. Then according to the dnality principle, the phase shifi in the situation dual
to the AB effect in which a charge is interfering in the electric field E is due to a
line charge is tie same and is given by (2.5). Then using the result for the phase
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shift of the magnetic moment due to B implied by (1.4), and the axial symmetry,
E = $2;5, where p is the distance from the line charge, 5 is a unit vector in the radial
direction and A is the charge per unit length. Thus E of a line charge is obtained
without solving Maxwell’s equations. In the next section, I shail apply this general
argument to phase shifts produced by gravity.

3. Topological Phase Shifts in the Gravitational Field

It is well known that the mass and the spin angular momentum in a gravi-
tational ficld are, respectively, analogous to the charge and magnetic moment in an
electromagnetic field. Therefore the analog of the AB effect for gravity is the phase
shift A¢ge acquired by a mass going around a string that has angular momentum
(analog of the solenoid}. The dual situation then is a spin going around a string or
a rod having mass only, and acquiring a phase 4¢};. Then according to the general
argument in scction 1, if the field equations are linear,

A = Ada. (3.1

The actual values of A¢e and A¢}; depends on the gravitational theory used
to compute them. I shall study these phase shifts in the following theories: A. New-
tonian gravity, B. linearized limit of Einstein’s theory of general relativity, and C.
The Einstein-Cartan-Sciama-Kibble (ECSK) theory of the gravitational field with
torsion [14]. In all three cases (3.1) will be shown to be satisfied. The differences
between these phase shifts provide a way of distinguishing, in principle, between
these theories, although in practice the predicted effects are too small for realistic
experimental tests at the present time.

A. Ncwtontan Gravity

In this case, only the mass, not the angnlar momentum, acts as the source
of gravity and is acted upon by gravity. Thercfore, both A¢¢ and A¢; are zero.
Hence, (3.1) is trivially satisfied.

B. Linearized General Relativity

Consider now the low energy weak fleld limit of general relativity, Write the
metric as g, = Ru, + Yuu, Where 7, << 1. In this subsection, all terms which are
second order in ~,, will be neglected. On writing 7,, = 7. ~ 11,1 7ag, the well
known linearized Finstein ficld equations are

0°8.7,, = 8%G Ty, (3.2)
in the gauge defined by 6“5, = 0. I ncglect stresses so that we have
Ty = 0% =0,i,j = 1,2,3 (3.3)

Consider now a particle with mass m and intrinsic spin S at low energics. In
the stationary situation, a coordinate system may be chosen so that v,, are time
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independent. Then the acceleration due to gravity is g = ~1 V7 and the ‘Coriolis’
vector potential is vo = ~(701,702.703), as can be scen easily from the geodesic equa-
tion. The ‘gravi- magnetic field’ H = 7 x yo = 202, where Q1 is the angular velocity of
the coordinate basis relative to the local inertial freme. To couple the spin to the
gravitational field introduce the vierbein e#, and its inverse e,*:

1 1,
c“o = éua - §7Fa:ej!u = 'spa + ETu ' (34)

which satisfy (3.20) and (3.22) below. The latin indices, which take values 0,1,2,3
msy now be lowered and raised using the Minkowski metric n,; and iis inverse 5=,
It then follow ‘hat the Ricci rotation coefficients w,®, = €,V ,.¢¥; are given by

1
Wuad = E(Yub.u - 7#1.1)1 (35)

where ,a denotes partial diftcrentiation with respect to z°.

The phase shift in interference due to the gravitational field may be obtained
in the present approximation by takiug the low encrgy weak field limit of the phasc
shift obtained in reference 5. In particular, the phasc shift due to spin alonc .
obtained by parallel transporting the spin wave function by acting on it by ‘he
operator

Cor .
&s = Pexp [_Il: /C aw”"‘SbarIz“] = Pexp [—;;/; %'r,...,.,S"“d:c“] , (3.6)

where the integral is along the unperturbed classical trajectory with P denoting
path ordering, and $*, which generate Lorentz transformations in spiu space, are
related to the spin veclor ¢ and the 4- velocity v* by

Sdb - “'hdvcsd; (37)
with all components being with respect to the vierbein. The subsidiary condition

S%y, = 0 1s assumed here,
Rewrite (3.6) as

—p _i l ab __i l Gab g i qat
¢y = | (‘.Xp[ h f; zm.,,,s dt A 27,,“5., ' . (3.6")
The first integral in the exponent of (3.6') is
1 i) 1 )
i i’mo,ib dt 4+ ,E’rm',jb dt= ¢ (gxS-v- Q. S)dt. (3.8)
C & (o}
The second integral of (3.6') is approximately
1 ST
gliiaSdst = @ gx S -dr. (3.9)
(&} C
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Combining these results, (3.6) reads

(b_g:]’cxp[f~%2}chs~dr+%ﬁﬂ-Sdt]. (3.10)

The precession represented by the last term of the exponent in (3.10) corresponds to
the interaction cnergy —01-8 = ~1S-H in the Hamiltonian. This may be understood
from the fact that when we transform to a frame rotating with an angular velocity
0 relative to the local inertial frame, the spin that is constant in the inertial frame
obviously rotates with angular velocity -2 relative to the new frame [15]. The ratio
v of the magnetic moment to spin introduced in section 1 for the elcctromagnetic
interaction is, for a particle with charge ¢ and mass m, v = 4%, where ¢ is the
gyromagnetic ratio. For the gravitational field, the principle of equivalence implies
that the ‘charge’ density equals mass density. Therefore, ¢ = 1 and e = m. Hence, 4 =
1 and the ‘gravi- magnetic moment’ ug = 18, consistent with the above interaction
energy.

Equations (3.2) subject to {3.3) arc
870470, = 85GThy.

These are like Maxwell’s equations in the Lorentz gange, and may be solved in the
same way. Consider the specific ease of an infinite uniform hollow cylinder of radius
po and mass per unit length ;4 rotating about its axis with angular momentum per
unit length J parallel to the axis of the cylinder along the z-axis. This is anulogous
to a rotating charged cylinder in clectromagnetism. So, on defining » = (21,22, 2%),
p=(z',22,0), and p = |p|, the solution exterior to the cylinder (p > py) is obtained to
be

*

4
Yoo = Yyl T Y22 = Yuz = 4(;,1 l()gp,‘yu = —

4
szxr:—TGpr, (3.11)

where 5 is a unit vector in the direction of p. The solution in the interior to the
cylinder is

4G
Yoo = Y11 = a2 = Yy = AGplogpg, 10 = ~ P

5 J xr——-ggJ X p. (3.12)
] P

Suppase at first that J = 0. Then, from (3.11), @ = 0 and g = -5, Consider
the interference around the cylinder of a particle whose spin is polarized in the
z?—direction with the axis of the cylinder lying along the 2*- axis. Then the phase
shift due to the coupling of spin to curvature {5,16] is obtained from (3.10) to be

9 y
A¢G:—~f ng-dr:—Sr(—’uS. (3.13)
i Je h

This phasc shift is independent of ¢ and is therefore topological.
Consider now the dual situation that is constructed as follows, Divide the
cylinder into small segments of length 8. The mass of each segment is m = e,
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In performing the duality operation, each segment is replaced by a segment whose
spin is the same as S and the particle is replaced with another particle with mass
m. Then the cylinder has angulor momentum per unit length J = §. Therefore,

m_ S

T (3.14)
So, in the dual situation, the mass m is interfering around the cylinder with angular
momentum per unit length J, which is a gravitational analog of the AB experiment,
From (3.11), the phase shift due to J is the Sagnac phase shift [4]

8¢, =24 yo.dr=—8Cmy. (3.15)
A A

It follows from (3.13), (3.14) and (3.15) that (3.1) is satisfied.

1 shall now describe the gravitational analog to the topological phase shift
of the neutron due to the magnetic field described towards the end of scction 1.
Suppose, in a neutron or atomic interference cxperiment each of the two interfering
beams passes along the axis of cach of two identical very massive cylinders. One
of the cylinders rotates as the wave packet of cach neutron enters the cylinder and
stops rotating before the neutron leaves the cylinder. Then from (3.12),

R,V x0- --%%J. (3.16)
Suppose, for simplicity, that the spin of the neutron or atom is polarized along the
axis of the eylinder. The first integral in (3.10) would be the same for both beams.
Therefore, the phase shift between them 1s given by the second integral of (3.10)
due to the rotating cylinder to be
4GJ ST

Tt (@40

A¢p = —l-f Q-8dt = —
hjc

on using (3.16), where 7 is the time spent by the neutron inside the hollow cylinder,
assuming that the time intervals during which the rotation of the cylinder is turned
on and off is negligible compared to 7. As in ihe electromagnetic case, the phase
shift (3.17) is not accompanied by a force, apart from transient cffects when the field
is turned on and off which occurs also for the AD cffect duc to the scalar potential
[1]. Hence, (3.17) is a topological pliase shift.

It i1s intercsting that A®g obiiined here by parallel transport with respect
to the gravitational connection is analogous to how the electromagnetic phase shift
experienced by the dipole was obtained by parallel transport with respect to a corre-
sponding counection {8,9]. The three gravitational phase shifts obtained above using
{3.10) and (3.15) arc the low energy weak field limit of the phase shifts obtained
previously using Dirac’s equation {5]. Howcver, these phase factors correspond to
the tentative Hamiltonian

Yo _ 1

1
H=-—(p-— - 2 2 8.
‘Zm(p my ~2S x g +m 5 25 H, (3.18)
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in the sense that they may be derived from this Hamiltonian. This is a gereralization
of the Hamiltonian found by DeWitt {17] to include spin. One way of confirming
(3.18) is to dircctly take the low cnergy weak field limit of Dirac's equation, which
will be studied in a future paper.

C. General Relativity with Torsion

The phase shift in general relativity may be obtained from the action on the
wave function of the gravitational phase factor [18)

1
bc = chp[fi-/;(e,."l’a + -z-u,,“,M",,)dz"], (3.19)

where ¢ goes through the ) fering beams. Here, P, and M%;,a,b = 0,1,2,3 arc
the translation and Lorentz ¢+ sformation gencrators which generate the Poincare
group that acts on the Hilbert space. Then e,® and w,®, have the interpretation of
the gauge potentials of a Poincare gauge ficld. In an interferometry experiment the
two beamns nced to be brought together by means of mirrors which gives rise to the
Thomas preeession [19], which will be treated elsewhere [20].

It was shown by means of the WKB approximation of Dirac’s equation that
(3.19) dctermines the gravitational phasc [5,18]. This may ulso be realized for a
particle with arbitrary spin as follows: The Lorentz part of {3.19) ensures that the
wave packet is parallel transported infinitesimally, while it acquires a phase, which is
a good approximation for the locally approximate plane wave being considered here.
To find the phase acquired due to energy momentun, note first that ¢,% depends on
the observer. A Lorents trausformation of the observer results in e,* transforming
as a contravariant vector in the index o while £, transformus as a covariant vector.
Supposc that a particle is in a state [ > that is approximately an eigenstate of P,
with cigenvalues p,. The fact that the gravitational phase is observable along an
open curve implics that the “wave vector” p, = e %p, is observable [21,22]. Requiring
that the correspondence between p, and p, is (1-1) implics that €, is a non singular
matrix, Thercfore, it has an inverse ety

e, ety = 6% (3.20)

Hence, pa = ¢¥,p,.. The Casimir operator y® 1%, 14 of the Poincare group has a definite
y 1 » i
value, say m?, for the given particle. Therefore,

1 papy = 9" pupy = m?, (3.21)

voere ght = ptet e’y is a non singular matric, Its inverse g, defines a pseudo-
'mannian metric of Lorentzian signature on space-time. On using (3.20),

Juv = Naseaest. (3.22)
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Thus the definitenes: of the mass (which may be zero) ensures the definiteness of the
phase that depends on e,® even for open curves. In this way the space-time metric
is deduced from the gravitational phase corresponding to the translational part of
{3.19) which is observable along an open curve. Conversely, the metric determines
the latter phasc to be observable along an open curve,

The field strength or curvature of this Poincare gauge ficld is obtained by
evaluating (3.19) for an infinitesimal closed curve C:

{ 1
e = L= S(QuPa+ it M a)do™", (3.23)
using the Poincare Lie algebra, where
Q" -de* 4wy At (3.24)

is the torsion and
Ry == dw® +w® e AwSy (3.25)
is the linear curvature.

Comparison of (3.19) with (1.2) and (1.4), and (3.23) suggest that there
may be topological phase shifts duc to interference of coherent beams that enclose
a region that contains curvature and torsion, but which are zero along the bearns.
Such an example is provided by the cosmice string whose metric exterior to the string
is given cylindrical coordinates as (23, 24, 25).

ds? (it} gde)? —dp? - of prdd? — d2?, (4.26)

where o and g constants. Then the metric g, satisfies (3.22) for the following
orthonormal co-frame field {¢*} adnpted to the above coordinate system:

¢ = dt 4 fdd,e! — dp,e? = apdd,c® = dz. (3.27)

The connection coefficients in this basis arc w,?, = ¢,°Vyue*s = 0, for all a,b, 5 exeept
for

wyl, = wg? = —adg. (3.28))
it follows, on using (3.24) and (3.25), that Q* = 0, &%} = 0 outside the string. The
scattering cross section of particles with definite energy in the above geomnetry has
been obtained before [26].

In the appendix it is shown that this solution may be extended to an interior
solution that has uniform cnergy and spin densities and which generate curvature
and torsion according to the ECSK equations [14]. The -mstants o and g are then
determined by matching the interior and exterior solutious to be

a=1-A4Gpu0 = 40, (3.29)
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where u is the mass per unit length and J is the angular momentum per unit length
due to the intrinsic spin density inside the string. ’
If ¢ is a closcd curve around the cosmic string then from (3.19),

3
e = exp (—if cFOPDdr") Pexp {—if (Z e Py +w,,‘,M21) dz“] , (3.30)
¢ C \k=i

using the fact that ¢,°P; commutes with the other terms that occur in (3.30).The
first exponential is a time translation second is a spatial Euclidean transformation.
Hence, if (3.23) is valid, then the time translation would correspond to torsion being
non zero insice the string. Suppose that the surface of the string is given by p = p,
where pg is a small constant. Then; substituting (3.27), (3.28) into (3.30), and using
(3.23), the flux of torsion through a cross-section T of the string is

/ Q= 21r/3,/ RB'; =2a(l-a) (3.31)
by b

This is independent of the particular geometry inside the string so long as ¥ is
“infinitesimal” so that (3.23) is valid. In particular, {3.31) is casily verified for the
solution in the appendix, independently of the value of p_, using (A.12), (A.15) and
(A.16).

For simplicity, consider a circular interferometer with constant radius r > po
in a plane normal to the string, with its center on the axis of the string. It may
be a superconducting interferometer, ¢, g. a superconducting ring interrupted by
a Jo ephson junction. Or it may bLe an electron interferometer, or a wave guide,
such as an optical fiber, at one point of which is the beam splitter that splits a
beam into two which travel in opposite senses and interfere at a mirror that is at
another point in the interferometer. The interferometer does not rotate relative to
the distant stars, which may be ensured by requiring that telescopes rigidly attached
to this interferometer are focused on the distant stars.

The phase shift may be obtained using (3.30) with € along integral curves
of p# which lie on u 2 dimensional subinanifold ¢ with constant z and p = . Hence,
C may be chosen to be along a circle around ¢ with constant ¢t. Suppose E iy the
energy of the wave function which is assumed to be constant in time at the beam
splitter. Theu it is coustant everywhere along the beamns. Therefore, in this WKB
approximation, the magnitude of the momentum p = (£2 - m3)1/? is also a constant
along the beam. By taking into account the Fermi-Walker transport of vectors
associated with [¢ >, M2, in (3.30) mnay be replaced by the spin operator $%; in the
present coordinate basis {19]. The spin is assuined to be polarized in the z-direction,
i. ¢. l¢ > is an eigenvector of §? with cigenvalue S/h.

Now, the three operators in (3.30) counnute with one another and their
actions on |¢ > give rise to the following topological phase shifts: (i) The general
relativistic Sagnac phase shift [4] is obtained from the first factor to be

_ [ E o, _ E o ~ G .. q ac
AdE = fc h do = 7'/2 XQ” dpAdg = —EwhEJ, (3.32)
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where E is a 2-surface spanned by €. (ii) The phasc shift duc to the coupling of
spin to curvature [5] which is obtained by the sccond factor in (3.30)*

Aps = —%{éjwélzﬂ'é - 21(} = - ./Euﬁélzd/’ Add = ~8W%S}L (#.33)

The phase shifts (3.32) and (3.33) arc expressed as flux integrals of torsion
and curvature because they could have also been obtained from (3.19) which de-
pends only on the affine connection. (The torsion and curvature fluxes contained
in (3.32) and (3.33) arc the same as (3.31) which is independent of the particular
geometry mterior to the string onsidered here.) It follows that these phasc shifts are
independent of the shape of thie interferometer enclosing the string and thercfore
may be called topological.

I shall now show that the above topological effects satisfy the principle of
duality formulated in scction 2. Consider first tiie Sagnac effect on a particle with
energy £ due to the spinning string with angular momentum per unit length J.
This 1s like the AB cffect due to a solenoid. Divide the string into sinall segments of
length 6¢. The spin of cacli segmeut is § = J6¢. In performing the duality operation,
each segment is replaced by a segment whose mass is the same as B and the particie
is replaced with another particle with spin 5. Then the solenoid has been replaced
by a rod with mass per unit length j = . Thercfore,

I

S
no

(5.34)

Conversely, if (3.34) is valid then the two situations may be obtained {rom each
other by performing the duality operation. Hence, by the duality principle, the
phase shifts for the two situations should be equal. Indeed, the phase shifts (3.32)
and (3.33) which were derived without paying any attention to the duality principle
arc equal if and only if (3.34) is valid.

This illustrates also again how thie duality principle may be used to obtain
the phase shift for the dual sitnation: From (3.32), we may obtain (3.33), or vice
versa, on using (3.34). Even though the general relativistic equations are in general
non linear, the equations that are solved i the appendix to ebtain the exact solution
are all lincar, so that there must be duadity in the present case according to the
general arguments of scetion 2. If this duality is assuined then a new gravitational
solution may be obtained from an old solution both in the present case and in the
low cnergy weak field ease considered carlier, similar to how this was done in the

* The phase shifts {3.32) and (3.33) may be evaluated using the line integral outside the string using
{A.16) or the surface integral ingide the string using (A.11). In (3.33), 25 has been subtracted from the
line integral to remove the purely coordinate effect due to the rotation of ¢ by 27 as one goes around €,

consistent with the Gauss-Bonunet theorem.
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electromagnetic case at the end of section 2.

4. Concluding Remarks

As alrcady mentioned, the AB effect shows that the ficld strenglh is insuf-
ficient to describe the electromagnetic ficld, whereas the phase factor (1.2), which
is called a holonomy transformation because it parallel transports around a closed

. curve, adequatcly describes the ficld, More generally, for an arbitrary gauge field,

the holonomy trausforinetions are of the formn (1.4), with A,* now being the corre-
sponding vector potential. The fact tha* these are sufficient to determine the ficld
uniquely is shown by the following theorem [27): Given the holcnomy transforma-
tions (2) for picce-wise differentiable curves which begin .and eud at a given point
in space-time, the gauge potential 4,% may be reconstructed, aud it is then unique
up to gauge transformations.

But since the set of such curves forin an infinite dimnensional manifold L, the
corresponding operators (2) have a great deal of redundancy. Indecd, the gauge field
in space-time may be reconstructed from a minimal set of these operators defined on
a four dimensional submanifold of L [7]. This is mathematically equivalent to work-
ing with the gange potential defined in a purticulur gauge on the four dimensional
space-time. Therefore, onee the redundancy in the loop spuce L hias been removed,
there is no advantage to using the holonomy transformation (2) as opposed to the
gauge potential in a particular gange.

It follows that in quantizing the clectromagnetic or more general gange fields,
onc must yaantize the gauge poteutial nstead of the field strength. Sinilarly, the
topological cffects due to the gravitatioual field deseribed above suggest that in
quantizing the gravitational field, it is the ‘gange potentiads’ e, and M2, which
should Le quantized, and the metrie (3.22) is obtained from them as a sccondary
variable {26,22]. However, there is a breaking of gauge symmetry which miakes ¢4
a tensor field instead of 1 conneetion [22]. This is like how in a superconductor the
U(1) gauge symmetry is spontanconsly broken, which wmakes A, 2 covariaut vector
ficld instead of a conncetion,

So, it may well be that in the carly universe there was the full Poincare gauge
syminctry with e,* and M, having vacumn expectation value zero in an appropriate
gauge. As a result of spontancous symmetry breaking of the translational part of
the Poincare group, ¢,* may have acquired a vaciun expectation value equal to
6, corresponding to the Minkowski geomnetry. Bub 1 emphasize that these are
speculative remarks, and need justifieation by a detailed theory.
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Appendix: Spinning Torsion String

The simplest gravitational ficld equations in the presence of torsion arc the
Einstein-Cart - Aciama- Kibble (ECSK) equations {14], which may be written in
the form [20]

%;,.-,-k,o‘ A Y = —BxGL, (A1)

1].','1;101 I\Qk = 87!'(;8.‘,‘. (A2)

where t; und s are 3-form flelds representing the energy-momentum and spin den-

sitics. I shall nov  btain an exact solution of these cquations for the interior of

the cosmic string which matchies the exterior selution (3.26). This will then give

physical and geometrical meaning to the parameters o and g in (3.26). This solution

will be different from earlier torsion string solutions {31] that have static interior
metrics matched with exterior metrics which are different from (3.26).

The p and z coordinates i the interior will be chosen to be the distances
measured by the metric in these directions. Sinee the exterior solution has symime-
tries in the ¢, ¢, and : directions, it is reasonable to suppose the same for the interior
solution. So, all functions in the interior will be functions of p only. Requiring also
simplicity, I make the following ansatz in the interior:

0° = u(p)dt + vp)dd, 0" = dp, 0% = f(p)dd, 07 = dz,w?) = k(p)dd = —w'y, (A3)

all other components of w'y being zero, and ds? = 5,000 = gde*de’. Suppose
also that the energy density « and spin density ¢, polarized in the z-divection, are
constant and correspond to a classical Huid ot rest. 1, e,

o= A" ABEAGY — f(p)dp A d A dz,
Sy = ~8y = a0 AP A = af(p)dp A dd A dz, (A4)

the other components of s; being zero, In ters of the components of the euergy -
momentunt and spin tensors in the present basis, this means that %) = ¢ - constant,
and #%y; = ¢ = constant,
It is assutned thint there s no swfice energy-womentum or spin for the string.
Then the metric must satisfy the junction conditions [30], which in the present case
are
Tuvl= = guoles Tigpuls = Biguul + 20y (A5)

where Kapy = 5(=Qapy + Quya — Qhup) s the contorsion or the defeet tensor, |, and
|- refer to the Bmiting valies as the boundary of the string is approached from
outside and inside the string, respectively, and the hat denotes the corresponding
coordinate component.

o e ———————
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Substitute (A.3), (A4} into the Cartan equations (A.2). The (4,5) = (0,2),
(0,3),(2,3) egs. arc antomatically satisficd. The (7, ) = (0,1),(1,3),(1,2) eys. yield

J'(p) = K(p) = 0.0/ (p} = 0,V (p) = 8rCa f(p), (A.6)

where the prime denotes differentiation with respect to p. Therefore, the continuity
of thie metric (eq. (A.5)) implics that, since v =1 at the boundary, u(p} = 1 cvery-
where. Now substitute (A.3), (A.4) into the Einvtein equations (A.1). Thei=0eq.
yiclds

K(p) = —8aGef(p). (AT)
The i = 1,2,3 equations yicld, respectively
I3 .
= 0,ts=0.ty = Eﬁ;'“ AdpAdp = =" AV A G2, (A8)

using (A.7). Henee, %y = ¢ = t%. From (A.06) and (A7),
H l
)+ ;:,f(ﬂ) =0, (AY)

where pr = 37O Tn order for there not to be a metrical “cone” singularity
at p =0, it is necessary that #* ~ pd¢ neir p = 0. Henee, the solution of (A.9) is
[(p) = prainf. Then from (A.G), k(p) = cos Lo, and requiring 1(0) = 0 to avoud w coniceal
singularily, v(p) = BnGop (l — cos ﬁ—_) . This gives the metric in the interior of the
string to be

2
, Y ) , PR ) . .
ds? = [«H FBuliap (] - ('u.-.'rl—>] —dp* — pa?sin® (»L> dp? — dz?, (AN
ik fr
The only non vanishing components of curvature and torsion are

) i "
()“ = Bw(iop s sin (/—> dp Aild, If'-z = ——3in ([—’) dp Addy = —*|. (A1)
f)* I)‘ l)t
I apply now the junction conditions (AL5), which will show that p is dis-
continuous across the houndary, Denote the values of pfor the boundary in the

internal and external coordinate systems by pooand py vespeetively, jFrom (3.22)

and (A10), g and g5 are respectively contimons iff
. 4 -
P 8rGape” [V —rcas== ), (A1)
/7‘
P
g pEsin—, (A1)
/l*

The renaining wetrie coeflicients are clemly continnons. The only non zero contor-
sion terins which enter into (A.D) are oblaiued from (A.11) to be

K oo o —dnGap s sin Lok = - (8nGa)p et (1 cond ) sin 11
R~ fap .u/”. Viip = ~(8r0ia) p k »-rn.s;; .ﬁmll—“ (A1)

——
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Using (A.13) and(A.14), it can now be verified that the remaining junction condi-
tions (A.5) are satisfied provided o = cos%;. The mass per unit length is

1 p- 1
= 1 T — f——— | == —— 1
p..Ld) AD e (l Cmpt) BWG/ER 2 (A.15)

where T is a cross-section of the string (coustant t,z). Thercfore, o = 1 - 4Gp. The
angular momentum per unit length due to the spin density is

- 1
J= ‘/;200‘ A% = 2mop a? (1 —Cos%:) = m/ﬂq". (A.16)

Hence, from (A.12), § = 4GJ. The Sagnac phase shift obtained carlier is therefore
A¢ = ET, where T is the flux of Q° through . In the special case when torsion is
absent, which in the ECSK theory means that spin density is zero, § = ¢, and the
above solution reduces to the exact static solution of Eiustein’s theory fonnd by
Gott [32] and others [33], whose lincarized limit was previously found by Vilenkin
[34]. After this work was completed 1 learned that Tod [35] has studied torsion
singularitics using affine holonomy and the ECSK equations analogous to the present
approach.

Note added in proofs: The phase shift due to spin in the interference around o rod and
a cosmic string has also been studied by B, Reznik (PhD thesis, Tel Aviv Univ.,
1994, avd preprint to be published in Phys, Rev. D), by using the contribution to
the Lagrangian due to the gravitational interaction energy U = § [ T#y,,d*x. This
amounts to treating gravity as a spin 2 field, compared to the present geometric
approach which begins with the full general relativistic theory. However, the above
mentioned paper assumes that 790 in the rest frane of the particle is the curl of
spin density, which is then boosted to the laboratory frame. This assumption cor-
responds to setting the ‘gravi- magnetic moment’ j equal to the spin. This differs
from the result in section 3 of the present paper that pg is half the spin in accor-
dance with the prineiple of equivalence. The latter result implies that 7 in the
rest frame is half the curl of spin density. Then, integrating by parts, it is casy to
show that the Lugrangian for a particle with mass m, velocity v and spin 8 in the
laboratory frame is

IO . 1
Eimv‘~(l: %mv’—mvam-}mv-'yg+‘2v'Sxg+§S-H

This coufinms the Hamiltonian (3.18) of the preseut paper. Also, the present paper
studies an additional spin interaction represented by the last term of (3.18). And
this gives risc to the new topological phase shift (3.17).
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Abstract

Many quantum and classical fields are known to be influenced by disorder.
Anderson tansition of the Schrodinger field is a remarkable cxample of such a disorder
cffcct. In this article we will discuss the cffccts of disorder on gravitation, The genceral
relativistic (GR) gravitational ficld is a specially important case; because, this problem
has not yet received much attention and disorder has to be introduced in 2 frame
independent gecometric manner. Furthermore, the GR equations arc non-lincar. Since
gravity itsclf acts as a source of gravity, non-linear self-coupling is expected 1o cause the
gravitational ficld to be more sensitive to disorder. Hence, any effects due to a random
source distribution will amplify or “pile up” and encourage localization.

In this naper, we proposc a simple model of a gravitating system with random
disorder. Diruder is introduced through a stochastic generating function. The affinc
parameter, T, for the out going null geodesics is calculated and observed to lengthen with
the increase in disorder, We interpret this as a slowing down in the propagation of
gravitational ficld and (as in the cases of other disordered ficlds) duc to localization, We
argue that iocalization must have becn important in the early universe; when, due to
thermal and quantum fluctuations, space ime was very strongly disordercd. In such a GR-
localized cra the cosmological scale factor, S(t), will be diffusive and slow. Our
calculations show, in general, § ~ 1Y where ¥> 2. This random walk-like ficld
propagation will cffectively increase the value of the Newtonian constant G that can
reader the gravitational interaction 1o be strong enough to produce the nuclcation sites for
primordial matter. We reason, such random condensation could have Leen responsible for
the observed inhomogenceity of the matter distribution in the present day universe.

1. Introduction

A sysiem is said to be ordered when it has some symmetry; randora breaking of
symmetry causes the system to be disordered. Many new phenomena are known to result
from disorder. The problem of random transitional symmetry breaking in a one
dimensional phonon field was first reported by Dysonl. About a decade later Anderson
considered a disordered electronic system2:3, Since that time, pardcularly after Anderson,
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many researchers have considered the case of disorder in both classical and quantum
fields®-7.

In this article we will consider the general behavior of all types of disorder induced
localization phenomena with the goal to understand the peculiarities of the gravitational field
localization. In particular, in the following sections we will briefly review the classic work
by Anderson on the localization of electron waves. Later, the physical process of back and
multiple scatterings in a strongly disordered system will be described. Finally the results
from our model for gravitation with random disorder and the dynamics of a “GR-localized”
universe will be discussed.

2. The Anderson Problem

Anderson studied the non-relativistic Schrodinger field of an electron in a random
potential (disordered crystal) lattice. He reasoned that, in the absence of perfect
translational symmetry the electronic eigenstates would not follow the Biock-theorem.
Hence, the wave vector k would cease to be a good quantum number and the wave
function ® would not belong to a unique wave vector. Further, for strong enough
disorder the wave may be localized in space. Anderson determined that the envelope of
such a localized state is peaked abeut its localization center and decreases rapidly away
from that point. The probability of finding a localized electron rapidly approaches zero, as
a function of the distance from its center.

Quantitatively, the problem consisted of two parts: the introduction of disorder in a
mathematically tractable fashion while retaining the essential physics and the definition of
a calculable parameter that measured the effect of disorder on the field. The first part was
answered by modeling the unperturbed medium as a perfectly spaced lattice of uniform
square well potential field V(x) of depth equal to V. On this lattice, a random potential
W(x) was superposed. The width of the random distribution was W, as shown in Fig. 1a.
For the second part Anderson proposed using the value of D(W,R), the quantum diffusion
coefficiei;. D(W,R) is a measure of localization; that is, the absence of diffusion to an
infinitely distant point is the criterion of complete localization. He showed, for sufficiently
strong disorder, i.e., W/V, bigger than a critical value A*, (the exact value of A* being
geometry and model dependent) D(W,R) > 0 as R — oo,

This is behavior is known as the Anderson transition. At this fransition, an
electronic system undergocs a rapid change from some states localized to all states
localized. This is a cooperative effect brought about by the coherent interference from all
parts of the system. In praciice, interference from the local regions is dominant; that is,
constructive scatterings from the local sites are conducive to extended states. On the other
hand, locally destructive interference or back-scatterings cause localization.4 In the
Anderson phase, disorder is strong and electron transport is absent. Figure 1b shows the
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extended, non-Block type electronic wave functions and Fig. 1¢ shows a localized wave
function.

Energy A
Eo-Weipmpono oo, ¢ Envelope of ¢
Eq + Wr2™=tr _—

ro v vV VT

(a) (b)
Enveliope of ¢
¢
r
©
Figure 1, (a) Periodic Potential Eg with applied random potenticl W,

(b) Non-Block type extended clectron wave function.
(c) Localized wave,

Note that, because i coulomb attraction between the electron and the positive ion
cores, the electron is trivially expected to be attached (localized) to the lattice points. The
first unexpected quantun miechanical result was that, despite the scatterings from the zero-
point vibrations of the lattice, the electronic states are extended. Furthermore, this
behavior i» independent of the value of the lattice constant. In the early years of the
twentie*h century, the effects of scattering due to zero-point vibration was a much
vor' ted question, The pursuit for evidence of zero-point scattering was a motivatior for
mary * -ray diffraction experiments in crystals and low temperature resistance studies in
j <¢ r-tals. As lower and lower temnperatures were achieved the research on resistance
ev  t-uly led 1o the unexpected and startling discovery of superconductivity.

"The. question of lattice spacing was answered much later by Mott. Starting with the

.~ 'L state of extended wave eigenfunctions, Mott showed that as the lattice constant is

. zased the electron will tninimize its energy by forming a bound state with a positive

core. This will collapse the wave function into a hydrogenic orbital and result in a metal-

insulator transition. Confinement costs kinetic energy but in the low density (large lattice

spacing) limit, potential energy becomes the determining factor for the ground state
configuration.

Another related transition was discussed by Wigner. The Wigner crystallization
(localization) ‘Iso takes place in the low density limit but does not require a lattice. This
behavior is possible evei iin a uniform positive background of a “jellium” and is also
primarily due to the coulomb correlation. There is some influence of exchange or Pauli-
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principal which tends to keep the electrons away from each other. Although, ali three
transitions relate to the change from bound to extended states, in the Mott and Wigner
cases the underlying cause is the (classical) coulomb interaction. The rem.irkable aspect of
the Anderson phenomenon is that it is due to (the translation) symmetry breaking,.

The understanding of the electronic properties of disordered systems have resulted
in many advances.4- In the last ten years or so, these considerations have been extended
to many quantum and non-quantum ficlds. For instance, localization has also been
reported for the classical Maxwell (EM) ficld.’

It has been observed that, in suitably prepared disordered dielectric media and over
some restricted frequency range, electromagnetic radiation can be localized. For such a
medium, many transport properties such as microwave propagation has been shown to
become slow and diffusive.” However, the localization criterion for vector waves such as
the EM field is dependent on the details of the particular situation, Another reason for the
difference between the clectrons and photons is that the electron can be bound to a lattice
site; however, the dielectric function of a medium has to be positive and real at all points,
so 4 photon cannot form a locally bound state. In this context, because, of the universal
attractive nature of gravitation, the GR problem is at the opposite limit from the photon
case.

3. Physical Description of Localization

Even in a uniform material medium light propagates with a speed lIess than its
speed in vacuum. So what is so special about localization? To make the distinction clear let
us discuss the EM problem in some details.

Any medium has a substructure which makes it different from vacuum, This
structure may he due to atoms or “grains” which affect (scatter) the incident ficld. In a
“weak” medium the density (p) of these grains is small From one scatterer to the next the
tield propagates almost freely with a speed equal to ¢, just as in vacuum. However, by
Huygens principal ali the fields produced by all the scatters superposes and gives rise to a
net field F(R,t). In absence of absorption the amplitude of F at position R remains the
same s it would be in vacuum but F(R,t) acquires a change of phase, 8¢, proportional to
the displacement R. This 8¢ is in addition to the phase increase due to the “distance effect”
contribution in vacuum.8 Henee, the effective wavelength A, (the distance the field would
require to travel for the total phase to undergo a full cycle or Ad = 2nt) is shorter in the
mcedium than A, the wave leng.h in vacuum,

Cleaily, there are severai length scales of the medium, In the weakly interacting
limit only three are important: R(t), the radius of the wave front (spherical in an assumed
isotropic medium); the mean free poth £; and A. In this {imit, R >> 2 >> A. For scales
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much larger than A and £ the medium may be treated as a continuum and the net effect is
described by the refractive index n; where n = Ao/A. The wave propagates uniformly at a
constant rate. In a time dt, the displacement, dR, is given by the linear relation:

dR =c*x dt [3.1]

where, ¢* = Av = ¢/n, v is the frequency, and ¢* < c. This is the description of slow
but constant rate of propagation in a uniform medium.

To understand localization, the coarse graining of the effective medium model
described above needs to be relaxed. The problem has to be treated with a finer mesh by
including two additional lengths, < r > and &. The average intergrain distance, <1 > ~
(p!/dy where d is the Euclidean space-dimensicen and p is the density. The grains form
clusters in the medium. The correlation leagth, &, is a measure of the typical cluster size.
Also, & represents the scale length of disorder in the medium. At points separated by
distances larger than & the medium is uncorrelated. The length £ is inversely dependent on
the scattering cross section (Z) and p. Hence, it represents the scale of interaction
between the field ard the medium, In the uniform effective medium limit described above
< 1> and & do not pluy any role because , E<< <r > << £,

Disorder uffects are strongest and localization is possible if £, A and £ arc all of the
same order but A ~ ¢ < & With locaiization, the nature of wave propagation is
qualitatively different! In this case £ is small and the ficld propagates in a random walk.
Under this condition, the net distance traversed by the wave per unit time becomes
progressively slow. Propagation slows down as the wave moves away from the source.
In other words, the term "speed or rate of propagation” becomes ill-defined as dR
becotnes a sublinear function of dt, i.c.,

dR = c*(dt,dR) x dt . [3.2]

The "speed” or the factor ¢* decrcases with R; because, in cach region of radius R, there
are N ~ p x (RY) scatterers and the number of scattering increases with R, A large number
of these scatterings are strong enough to send the wave back into a region already
truversed. Many back and forth, zigzag, random walk like steps are required to make a net
forward displacement of the wavefront. Under complete tocalization, even after an
infinitely long time the wave fails to arrive at infinity.

4. The Gravitational Problem
One may ask, why is the disorder problem of any interest in gravitation? There are

two reasons: first, gravitation is one of the most pervasive interactions in nature and is
known to have wavelike solutions, so it is rcasonable to investigate gravitational
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localization. Second, at some early epoch in the history of the big bang universe the
quantum and thermal fluctuations of space-time, radiaiion, matter distribution must have
been highly non-uniform and randomly disordered. Such conditions could have produced
localization of these fields. The consequence of such a possibility may need to be included
in the proper description of the early universe.

The question we pose, is what happens to the gravitational field for a random
distribution of energy and matter? The formulation of this disorder problem in gravitation
is rather subtlr. Some of the difficulties arise from the tensor character of the gravity field.
Further, the requirements of the principle of equivalence or the symmetry under coordinate
transformations also need to be met. Namely, matter at any position influences the
geometry at that position; however, the apparent geometry can be transformed away
(along a linc) by a suitable choice of a free-fall coordinate system. Hence in GR the
problem of random distribution of sources has to be posed in a frame independent
manner.

Notice, cven though over a small region, (~1/g, where g is the determinant of the
metric) the effect of any one of the geometric patches can be gauged or transformed away,
the global effect of all these contributions is non-zero. This is a key relationship among all
non-local phenomena and give rise to Aharonov- Bohm type effects.

5. A Model For Random Gravity

As an example of a disordered gravitational problem, wc consider a random
perturbation imposed upon the general relativistic background of a stationary, axially
symmetric, line mass. This choice of a highly symmetric model is motivated by analytic
considerations and computational ease but is not essential for this discussion.

We investigate the effects of disorder by means of a “generating function”, A(r,t).
This statistical function A(r,t) will introduce disorder through g component of the metric
tensor ard hence into the equations of motion.9-10 Because, in the absence of disorder the
stress-tensor vanishes (except on the axis), in presence of disorder we will requite this
condition to remain true on the average. That is <stress-tensor> = 0, where < > denotes
the ensemble average over all the replicas of the distribation.

We consider null-radial outgoing geodesics. We thus start with a metric given by

ds2 = [1+AQr,/n]r" @m?+2m) gy )2
+ r° 2+2m) d¢2 + r2mdg2 (2m2+2m) (dr) 2 [51al

wheie 7' is the radisl distance froin the axis, # is the e voordinaic, ¢ is ilic azimuih
angle, z is the axis coordinate, and m is related to the niass parameter (mass per unit length
as measured at infinity). We assume that the generating function, A(r,'t), depends only

e
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upon r and ¢ and that it is differentiable in these variables. A is partitioned into a non-
stochastic and a stochastic part, as follows; 11,1Z

A0 =Ag+a(r,y [5. 1b]

The average of A is positive and is represented by Ag. The stochastic part is a(+’,r)
which is a random function with negative and positive values but of zero mean. The
absolute value of a(r’,t) is assumed to be smaller than that of Ag. With this stipulation, the
matter or source is held positive everywhere although it has a random perturbation above
and below its average. Alternatively, we may argue that the mass of the source only makes
sensc at infinity and as long ax the integral of a is less that 1, there is no problem of

negative mass.

For any given A(r',#) the terms 14+Ag can be rescaled to unity with the new radial
distance given by r . In terms of the new rescaled coordinates, r and ¢, Eq. 1a can be

expressed as

ds? = [1 +a(r,)] r m2+2m) (gr )2
+r Q)R 4 g2 p (2m242m) (dp) 2 [S. ic|

In the rest of this paper only these rescaled space time variables ¥ and ¢ will be
utilized. For any particular realization, the mixed Einstein tensors are:

Gf = 0,G! = - % |n'lx,(”2m2—2m--1) 1, G = A%I.‘,’rx r(VZmZ—Zm«l)I,

 m2
Go? = Llaw- gag + il x r- 20 -2m), and

G5 = Imar+ g+ 507 Yra2+laome) - 2m? - 2m - 1),

For this geometry, these are also the “physical components” of the stress tensor, The null-
radial geodesics ore given by

dZr

02 d’)Z +<lacta)> =0, [5.2]

2
) ar
+ r(m +my) (dt

where 7 is an affine parameter.
The ensemble averaging of Eq. 2, is chosen independent of 7 and £ such that
<G> = <G> = (.

We can also make <Gp2> = <G3¥> = (), provided the gencrating function satisfies

= . —== ———— e e o .
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2
aw = 5 @p2-Sa [5.3]

Eq. 5.3 is the choice for the outgoing geodesics. Under these conditions we can
choose the ensemble such that <a,, + a,> = « is a positive constant for r< reriical.
For r>reriical we take the ensemble average to rapidly approach zero.

6. Localization Farameter for Gravitation

To calculate the effects of disorder a suitable “test” | arameter has to be defined. In
the electronic problem discussed earlier, Anderson chose the diffusion coefficient as the
measare of localization, In the GR-problem, we propose the value of the affine parameter T
along out-going null geodesics to be the fiduciary quantity. The ratio of © between two
events with disorder and the T for the same two events in absence of disorder is close to
unity for no localization. ‘This ratio is larger than one for weak localization and will diverge
for strong localization. Similarly we use the differences A(t) = [t(a)-T(a=0)] and
|A(T)/t(a=0)] as measures of localization. A(t) is small for extended (non-localized) states
and large for the localized states.

The null geodesics, which include both light and gravity waves in this
approximation, are given by

2 g
G g(m2 +m) (L 2 +o =0 [6.1]
d2¢ 7 dt
The fonm of the solution to Eq. 4 depends upon the size of « as compared to 7. We can
best examine this by first considering the case of oo = (). In that case there is no disorder
and
\]
T = S “+ 2 [6.21
pxcl

where p = 1+ 2(m2 + m) and ¢l and ¢2 are arbitrary constants. We will set ¢l = 1 and
¢2 =) for simplicity.

For o > (), and letting g = 1 + 4(m2 + m), we defing

2a

ro = (i)” 4 [6.3]

Then forr < ry,

b
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()

1 g+l - _ L
T = —[—q-]zq A 29 (1 -2) 2 da (6.4]
qi{2a S
This integral is just the incomplete Beta function of arguments [("qf:—l , 15]
For x > xq,
gt
S VA R
Q(Za)

N

- - (1 + ) -
[ Beta 2;‘,%—)+ J.x LS U W ar . [6.5]

©)

We have numerically calculated the difference A(t) and the behavior of forq =2
and o from 0.0 to 0.05 in the range of 0 < r < 5, is shown in Fig. 2. The critical value
for o. = 0.04 is ro = 5 and for o = 0,05 occurs at r = 4.47. As the figure shows, the 1
needed to reach any given location (r) rapidly becomes larger as the magnitude of disorder
() is increased.

0,05
0.02%

T

4
Figure 2. ‘The dependence of (aftine parameler)y ¢ o minus (alfine parameter)gy = ¢ for
0<a<005and ) <r<50.
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Conversely, r rapidly decreases for a given t if o # 0 as compared to o = 0. This would
correspond to a retardation of either light or gravittional waves. We have also calculated

the value of this difference over an extended rany.c of r for o = 0.4. The dependence of
A(r) for a fixed value of & (o =0.4) and g=2 is shown in Fig, 3

As can been seen from Figs. 2 and 3, a radial null geodesic is retarded by the
presence of a random source (as compared to zero disorder). This behavior is reminiscent
of the slowing down of localized particles and fields. The electronic and EM -locatization
propertics can be measured in the laboratory; but terrestrial gravitational fields are 40
orders of magnitude weaker. So, GR- localization effects may be observable only in the
cosmic scale. However, the non-linear, self coupling not included in the above calculation
can amplify these effects. Even for photons at high intensity and strongly scattering non-
linearity is knov.n to produce super radiant behavior,

difference in affine parameter
L2
-

4 -
2
0 v Y v —
0 10 20 30
r value
Figure 3. Affine parameter diffcrence for a=04,q - 2.

7. Scattering of Gravitational Waves and the Rayleigh Cross-Section

ABetore proceding further we make « number of observations. All modes
(trequencics) are not equally localizable.5 High rrequency short wavelength modes lie in
the geometric optics limit and behave hallistically with little interference, For Hong
wavelength, A, the gravitational quadrapole®7 scattering is dominant and the scattering
cross section Z(A) is given by:

£Q) ~ (A°6) 7. 1]

This large inverse power law behavior is similar to the well known Rayleigh cross-section
in the dipole scattering of light. The gravitational cross-section vanishes more rapidly with
an exponent six compared to the fourth power for light. Hence, back-scattering and
localization will be strongest over a window of frequency with intermediate values of
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wavelengths ie., A ~ (E12) ~1< & < reig 1 =r¢, where £ is a measure of the spatial
correlation length of the distribution function . i(r,t) .

8. Cosmology of a GR-Localized Universw

In the primordial explosive models for the universe (such as the big-bang), the
quantum and thermal fluctuations of space-time and all fields must have been highly non-
uniform and randomly disordered at very early epochs. A detailed general relativistic
calculation including the non-linear interactions is very complicated, so it will not be
attempted here,. Instead we will reason in the big-bang universe disorder may have been
sufficient to induce localization of the type discussed above.4.3

Under this condition as in any random-walk, time evolution will be determined by
the random fluctuations and not by inertia. Propagation will be limited by the diffusion
cocefficient D(R). For gravitational propagation in a “GR-localized” universe of radius R,
D(R) may be obtained by extending the scaling theory results, i.c., 3

D(R) ~ cZ{re)! +(R)1) (8.1]

In Eq.[8. 9], ¢ is the speed of light and R = S(t)Rg, where S(t) is the cosmological scaling
factor.10. The Einstein relationd for D, and Eq. [8.9] may be combined to include the
effects of temperature (T). Hence, the dynamical equation for S(t) is modified. In the
Newtonian limit, with D(S) given by Eq. [8.9] it follows that

d<8()>_¢G D o 2
&t =3 KT <§>"<, [8.2]

Eq.[8.10] shows that the rate of cosmological expansion is controlled by the two
factors D and T. Paradoxically, an increase in the temperature slows down the expansion.,
This is a manifestation of the fluctuation-dissipation theorem and is physically due to the
increase in the frequency of scattering at higher temperature. Let us investigate two time
regions. At very carly times when R<r¢, Eq.[8.10] goes to the limit

d<8(®)> ¢G X = o 3 _
Tdt T3 RgEr <S>0 =0
During this period the cxpansion rate <S> ~ (1Y, with y =4, At later times § increases
and R > r¢ and the rate of expansion is given by

d<S(t)> ¢G CL

Gt = -2

- <§ =

dt 3 g <700

This epoch has anexpansion rate with y = 3. Both of these values (4 and 3) of the exponent
y are higher than the value (2) of the classical Brownian motion expansion rate exponent.
Hither casc represents “critical slowing down” reminiscent of critical behavior observed at
phase transitions.
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These rates are much slower than that predicted in the conventional non-disordered
cosmology. Such gradual expansion must have held the hot primordial matter close
together for a period longer than has been previously anticipated. This retardation
effectively increases the strength of the gravitational interaction G in the primordial
medium. Strong interaction could have helped the matter condense and precipitate at
randomly distributed nucleation sites. Such precipitation in condensation cells where the
effective G was large may have created the structures and non-uniform distribution of the
matter presently observed in the universe.
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ABSTRACT

We point out that in two-particle Down-Conversiou ex.periments the pboton pair is created in
an entangled state, which leads to multiparticle interference, as seen in coincidence counting
between the pairs. We noie that this type of coherence is ¢ .{ferent fvom, and incompatible
with, standard single-particle interference.

First, I would lik. y homage to Yakir Aharonov, and congratulate him both on
his birthday and on thi.  .uderful symposium, which is worthy of the occasion. Thad a
friend who, on his sixtieth birthday toasted himself with, "Well, I'm halfway there!”, and 1
wish to Yakir the same optimism and promise of continuing youth and productivity it
implies.

This talk should be seen as 2 sort of addendum to the talks by Profs. Ray Chiao and
Anton Zeilinger at this symposium. They both talked of the wonderful experiments that
have been performed, and are yet to come, with parametric down-conversion.! I am
merely going to examine the production process in the light of the superposition principle,
in order to show that superposition with many particles is even richer than it is for one
particle.

In the down-conversion process, a single photon hits a non-linear crystal, and two
photons emerge. Inside the crystal, energy and momentum are conserved, which correlaws
the momentum of the product photons. By placing a screen on the side of the crystal where
the photons are emerging, one can put pinholes so placed as to guarantee that the emerging
photons have the correct momenta to satisfy the conservation critcrion. We shall make a
simple mode! of this process that ignores the dynamic details, and only considers the
wavelile features consistent with superposition and the uncertaintly principle.2.3

To this end, consider the total momentum of the photons as zero, to within the
uncertainty principle, as guarantced by the size of the crystal and the placement of the
pinholzs. So the two photons wil! uiterge on opposite sides of the crystal, each pass
through two pinhcles, and then impinge on a screen, as shown in Fig. (1). In an actual
experiment, the scien is usuglly replaced by a beam-splitter, where photons are shunted
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into one of two particle detectors, But this is a complication that does not affect the physics
we are considering.

|€———L———%

Fig. (1). A simple model for two-particle down-conversion,

The perfect geometry to the center of the patiem is indicated by dashed lines.
The solid lines represent the actual paths from Qto S and §'. The position of
O is given by (x,y), and of S and §' by s and s'.

The amplitude a(0,S) for photon 1 to go from the source point O to the screen point S
will he proportional to
lI(O S) - (eﬁ(l,H,) +ei&(l,+l,)).
From the diagram, we see that
L=(D-sY + I ~1-65/2, I, -1 +6s/2,
L~1-/2-x, I, ~1+6y/2~2x
Thas,
10,8) ~ e* P cos B (s + y),
St ¢ lo-gn A Siicitzily, the amplitude a(0,S") tor photon 2 to go from O to the point §'
on the other screen will be
a(o,sl) - (eik(lfﬂ;) 4 ei&(l;+l£ l)
~ eik(2l+x) COS—")'E(&'I + y),
since
Vo i-ae12, 1, ~ 1+ 6572,
L~1~6y/24x 1] ~1+6y/2+x.

This leads to a result for the amplitude o deteet both a photon at § and one at S'in
coincidence. Itis




Al ALY
a(s,s)= ffj_mjﬂm dxdycosZ(s +y)cosZ (s’ + ¥)
~cos®Escos®ys’,  A<<llO,
~cosB(s -5, A>>A4/86.

The limit A << A/8 represents a point-like source (much smaller than the fringe spacing at
the screen), and is the usual criterion that must be satisfied to sec fringes from a single
source. From a source larger than this, the fringes at the screen will wash out. In our case,
such a small source will create two independent diffraction patterns at the two screens, so
that we will have cach photun leaving the source and acting independently of the other.
However in the limit A >> A/8, for a diffusc source, one sees a correlated two-particle
interference pattern. One sces the two-particle pattern by having one detector at point S at
one screen and the other detector at point §' at the other screen, If one sits at point S and
varies §', on¢ will have a sinusoidal counting rate, P(s,s")~1a(8,8"2; varying with §',
which has a 100% visibility. In this case if one counts a single particle, say at S, without
simultancously delecting the other particle, one will find no diffraction pattern. The
prabability of detecting a single particle at S is independent of s, since in this case
P(s) = Jds'|a(S,8) = comst.

The interference only occurs in two-particle coincidences.

There is a simple physical reason for this result, which is truly quantum-mechanical.
Normaily, for single particle diffraction from a scurce, through a pair of pinholes to a
screen, one knows the position of the source accurately. This is due cither to the source
itself being small, or through the use of lenses to position it at infinity, so that the wave
fronts at the two slits are correlated. This emission from an effective point-source produces
a diffraction pattern at the viewing screen. In our case of two-parlicle diffraction, neither
particle by itself forms a diffraction pattem, but the very fact that one of the particles strikes
the screen at a particular point § implies a certain knowledge about the source. It says that
the source is most probably Jocated at a position () such that the difference in the two path
lengths from O to S is a multiple of the wavelength, so that they are in phase. Thus the
very fact that one particle lands at S scts up a virtual latice of probable positions for the
source, This in turn will produce a diffraction pattern for the other particle at the other
sereen. So although either particle can land anywhere, once one has done so, it is closely
correlated to where the other particle is likely to land.

One can also get some insight into the process by considering the ¢mission in
momentum space. For a latge source one has A for the transverse size of the source (in the
y direction). This implies that dp, ~h/A, and since for a lurge source, A>> /86, this
says that the angular spread of the emitted photon is @ ~8p, / p~h/ A+ h/ A << 8. So the
angvtar spread is too varrow to encompass both slits, The photon goes through onc slit or
the other and there can be no interference between the two paths. On the other hand this
very narrowness guarantees that il photon 1 goes through the upper slit, then photon 2 will
£0 through the lower slit, and vice versa. So the two photons are correlated and the wave

function will he

v = (R [-k), + [k} [K),),
an cntangled state, On the other hand if the source is very small, we will have ¢ >> 0, so
that one cannot tell which slit photon 1 will enter and there will be interference between the
two slits. This same lack of definition of the beam puarantees that one also cannot correlate
the slit for photon 1 with that for photon 2, and so one will get two independent one-
particle interference patterns.
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The lesson we leamn from all this is that there i+ a complementarity between ong-and
two-particle interference.4 If one is present, it excludes the possibility of the other. One
either has correlated coincidence counts between the particles and zn cntangled state to
describe them, or one has independent interference patterns for the separate particles, and
one describes them by a product state.

As a final note, we mention a three-particle source. The importance of threc-particle
sources are that they are needed to create GHZ sutes, to test Bell's Theorem without
incqualities.3 Here three particles are emitted in a plane. If they arc identical particles,
momentum and energy conservation says that they will be emitted at 1200 with respect to
each other, each with the same energy. Apain we will assume they are emitted at some
point O within a source of size A in cach dimension, and they land the points S, ', S", at
their respective screens. The source is again tzken to have coordinates x, y, as in Fig. (2),
and the amplitude for landing at §, §' §", will be

8 \:S

(a) (b)

S‘.'..;rs__

Fig. (2). The three-particle interferometer.
(a) The perfect geometry; (b) The actual source point, O, and screen
detection points S, S', and 8", defined similarly as in Fig. (1).

A12

’ i AlY
a($,58%.58%) ~ ir.f»Alzj.—
~cos T(s+5 +5"), A>> 116,

~cosBs cos By cos®s”, A<<i/f.
So once again we see that for large A, we have an entangled state, this time between the
thiee particles, und in thi: case there is neither single particle, nor ¢ven two-particle,
coherence. Also for small A, as before, the three particles produce independent product
amplitudes showing one-particle interfercnce, but no multi-particlc corrclations,

dxdya(0,5)a(0,5)a(0,5")

A2
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Non-Locality and Objectivity in Quantum State
Reduction

Roger Penrose
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Abstract

An example of guantum non-locality is presented (“magic dodecahedra™)
which illustrates Bell's theorem without probabilities. A scheme is then put
forward for the objective reduction of the guantum state vector when too large
displacements of mass are involved in a superposition between two quantun
states. In this scheme, the reduction time is roughly the reciprocal of the grav-
itativual self-energy of the difference of the two mass distributions, measured
in absolute units,

It is a pleasure to be able to pay my respects to Yakir Aharonov i honour of
his 60th birthday, T shall bricfly deseribe two ideas that have Lo do with that
subject - guuntewin mechanics - which has engaged so meh of Lis attention, aud
to which he has made so many sarprising and profound conlributions, The firat
s an example that illustrates one of the theory’s most puzzling feadures: quantun
(Bell) nou-locality, without probabilitics. The sceond represents o new angle on the
weasureient. problem,

1 Magic Dodecahedra

L2 o it will

not be necessary Lo give more than a very brief outline of what 1s involved. The

I have deseribed this non locality example several times clsewhere

system consists of two atowms of spin /2 whicl are initially produced in s combined
state of spin 0 aud then stowly separated 1o a great distanee from one another
without, disturbing their individual spins. Measurements are subsequently made on
the two atoms individually, cach measurement being of i particulin yes/no kind and
corresponeds Lo one of 20 possible directions in space: those which are represented by
the vertices of a regular dodecahiedron, as measured out fromn the centre. T, we
imagine two widely separated but paralleloriented regular dodeeahiedra (which, for
driunatic effect, we can be miagined as heing hiere on earth and ona planet orbiiing,
a-Centuri, respectively), each of which has a spin 3/2 atom at its centre,  ach
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measurement would be defined by choosing one of the vertices of one dodecahedron
and ascertaining whether the amount of its central atom’s spin in that direction -
Le, the movalue, in that direction - has the particular value 1/2. If this is found to
be so, then this is the answer “yes”™; and one envisages that o hell rings, indicating
that the measurements on that particular atom have come to an cud. If the value
1/2 is not obtained (“no”), then the three possible me£1/2 states (namely 3/2, -1/2,
-3/2) are combined without disturbing the phase relations between them, and the
measurement is repeated in some other direetion,

For example, we could envisage performing the measurement with o Steru-
Gerlach type of apparatus, oriented appropriately in che chosen direction, and where
only one of the four different beams (the one corresponding to m—1/2) is examined,
yielding the “yes” answer (bell ringiug) if the atow is found in that heam. Oth-
crwise, by appropriate reversing of the magnetic ficlds, the three remaining heams
are hrought together withont disturbing their relative phases. An exactly stmila
spin measurewent is then performed in some other direction, corresponding to a
different vertex of the dodecahadron, and so on.

There are just two different properties that we shall need, concerning the resulis
of the joint measurements of this type thial can be performed on the two atoms - by
wyself here o carth and by iy colleague Alfic St.Uri, on o-Centurl. These coneern
sequences of measurements of the following type. Oue of the vertices of the dodeen-
hedron is siugled out - call this vertex the SELECTED one - and measurement:: are
performed correspouding to the three vertices of the dodecahiedron that are adjucent
to the SELECTED oue (hut not in the direction of the SELECTED onc ibself), It
may be ascertained that the “yes” cigensti s of these three measnrements are all
orthogonal Lo one another, and it follows that the three measurements neeessarily
comanaute  so i makes no diflerence in which order the three are performed. We
dedvee the fivst of the two properties that we shall need:

(1) TE Uri s Thappen to SELECT diagmetrically opposite verlices on our
respeetive dodecnliedra, then the bell rings for one of my measwrements
if and only if it rings for Uri’s diametrieally apposite measurement, this

being irrespective of whether it rings on the first, second, or third of the
measnretnents adjncent, to our SELIECTED vertices,

The second property s a little harder to ascertain, although this ean be done
withoul further explicit. calenlation (ef. ref, 1 for details):

(2) If Urt and I Lappen to SELECT corresponding vertices on our re
spective dodecabiedra, then the bell nimst ving for at least one of the six
measurements that we propose to make,

If we are to assume that the bell ringings are determined according to some
kind of local hidden variable theory  or, siniply, thal what happens on «-Centuri
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is completely independent, in the ordinary classical way, of the mncasurements that
I choose to make here on earth, then we can quickly deduce three things concerning
the results of measurements on my own dodecahedron alone:

(a) Each vertex of my dodccaliedron is preassigned us either a bell réinger
(colour it WHITE) or as silent (colour it BLACK), irrespective of the or-
dering in which the measurements are muade adjacent to any SELECTED
vertex.

(b) No two next-to-adjacent vertices can be both bell-ringers (WHITE),
(¢) The six vertices adjacent to one or other of a pair of opposite vertices

canuot be all silent (BLACK),

It is a nice eombinatorial exercise to show that no colouring of the vertices of
a dodecahedron WHITE or BLACK is possible, according to the rules (b) and (e).
This shows that the assumption of classical independence between the atom here
on carth and the atom on a-Centurd must be false - assuming that the expectations
of standard quantium theory are maintained. In Einstein’s terminology, there is
a “spooky wction at a distance” between the results of the measurements on the
spin 3/2 atows that Uri and T might choose to make, For eswlier exaples of Bell
noun-locality without probubilitics see®™? and the review article by Brown'; also
13 for results that can be adapted to give nou-local exiumples of this natire.

2 The Role of Gravity in Quantum State Reduc-
tion

I have frequently argued the case that the phenomenon of state-veetor reduction
must be a real physical effeet of some kind, and not just au illnsion, or a property of
conscious observers, or just some tricky matter of finding the right “interpretation”
of the quantum formalisin, Moreover, T have maintained that the physies that is
involved must be something in which the effeets of gravity wre erucial (ef. also 1-17),
Of course, it is clear that there are many differing viewpoints with regard to this
phenomenon, and I shall certainly make no serious attempt to convert anybody.
The motivations that underlic my own approach are various, but I bhelieve that o
munber of independent argrents can be given in favour of a fundamental role for
pravity in quantum state reduction .

For me, one of the strongest cones from the study of the space-timne singularitics
in the big baug and black holes, As a fundamental ingredient to the sccond law
of thermodynanics, it is necessary that the big bang’s sinpularity must have been
cnormously constrained - to such an extriordinary precision that only oue part
in (at least) 107" of the available phase space was made use of.  (Very likely,
the precision is cousiderably greater than this, depending upon the actual baryon
content of the universe the precision being infinibe for a spatially infinite nniverse,
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This figure is calenlated on the basis of the Bekenstein- Hawking formula for black
hole entropy, asswning a total baryon content of about 1089, The necessity of this
kind of precision is not removed by inflation®™.) It is this enormous constraint on the
gravitational degrees of freedom in the early universe, together with the fact that the
singularities of black holes - or of an all-embracing big crunch - scem to be subject
to no constraing at all, that gives us the powerful sceoud law of thermodynamics
in the form that we know it. The structnre of space-time singularitics is generally
acceepted to be a quantuin gravity cffect - or at least an effect of whatever the corrvect,
union of quantum theory with gravitational theory might be. Since the initial and
final types of singularity seemn to need to have such grossly different structures, this
strongly indieates that whatever this quantum-gravity union might turn out to be,
it must be o tiwe-asymmetric theory, The indications are, therefore, that somcething
mwore than just the standard time-symmetric procedures of unitary evolution st
be involved; the time asymmetric phenomenon of quantun state reduction nst
also be part of this entire nnified picture,

It is possible to be more explicit about this link between the time asymmetry of
space-time singulunities and that of the reduction procedure'®2?, hut I have no wish
to repeat the arguments in detail here. The essential point is that the complicated
high-entropy singularitics of gravitational collapse serve to ¢
causing an cifective reduction in phase-space voluime. Over the totality of all possible
states, this must be precisely balanced by a corresponding effective inercese in
phase-space volume that results from an indeterminacy in the evolution of physical

‘absorb information”,

systemns.  This indeterminacy is argned to be that which is arises in state-vector
reduction. (The pliase-space volume inereases because, in effeet, when the state gets
reduced there arve several different alternative outputs for ench input; whercas, given
the output, there is generally only one plansible input that need he cousidered.) 1
i# this necessary balance between these bwo scemingly disparate parts of physies
that tells us that these two parts of physics must actually be one and the sane,
Thus, not only is the structure of space time singularities - and consequently also
the second law of thermodynamics - a quantim gravity offeet, but so also nnst he
the very process of quantuim state reduetion.

[ have argned earlier that stite reduction should he somaething that comes about,
wlien space-times would liave to be superposed which differ “loo mnel” from one
another, in the sense that the difference between the space-times is of the order
of “one graviton” or more (so nature abhors superpositions betwoeen sufliciently
different space-time geometrics), Thave now cowe to the conelusion that we should
not regard this measure of difference as representing something whsolute - for which
quantiun linear superpositions would be forbidden whenever this vidue is exeeeded,
Rather, we should consider that there is o rate at which redaction oceurs, this
rute heing large for spice times that difler by o lavge amount, and small, when
the space-times do not differ mell, Tlins there is to be an iustability involved in
spice-time superpositions, giving a kind of half-life for the superposed stade, that is
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of the order of the reciprocal of the appropriate measure of the difference hetween
the superposed states.

What is this measure of difference? In a recent article?!, I gave some rather
tenuous motivations for a measure of difference bhetween the two weak quasi-static
gravitational ficlds that are associated with two different Newtonian mass distri-
butions. This can be reformulated as the grevitational self-energy of the differ-
ence between the two mass distributions. The present proposal, then, is to take
this sclf-cnergy B, measured in Planckian units (i.c. the abselute units for which
G = c¢=h=1). Then E7! gives something, in Planckian units, that is of the order
of the time that the superposition persists before it reduces to that given by cither
one masy distribution or the other. That is to say, E~! is roughly » half-life for the
superposed state to decay into one state or the other.

There is 1 particular advantage in a viewpoint of this nature that  not shared

«

by most other proposals for “realistic” gquantum state reduction (such as that of
Ghirardi, Rimini, and Weber??). In the ense of an unstable particle, there is always
an uncertainty in the mass of the particle, this uncertainty (iu uuits for which
I = ¢ = 1) heing of the order of the reciprocal of the lifetiie, ‘Thus, for any state-

reduction process of the generad kind that T proposing here, we expect some

kind of masgs energy naeertainty that is inherent in the superposed state. With the
present proposal, this uneertainty would have Lo be of the sane order as (he self-
cnergy i the pravitational field of the difference between the two mnass distribution

under consideration. This sclf-cnergy, according to classical general velidivity, 5 not

well defined - or, at least, it is not localizable - in o coordinate independent way.
In clagsical genernl relativity, this is an inherent feature of the theory, The
quantity T, that occurs in Finstein’s equation 1y, — 1/2Ry,, = 86, deseribes all
the energy of matter, but it does not directly take into account the energy in the
gravitational ficld. That coergy is non-local; and canuot bhe meaningfully assigned
n local measure of deusity. Thus, there s ne tensor quantity, independent of coor-

dinate choice, which deseribes this energy. Nevertheless, gravitational field enerpy
1s “real”, in the sense that i st be taken into aceount iu physieal processes, such
as bhe (positive) energy that is carried away in the form of gravitadiounl radiation
from a double neutron st systews, or the (negative) conbribntion to the total mass
of a eclestial body, snch as Jupiter, owing to its gravitational self-cuergy, However,
the mass -energy in gravitation is a fundawmentally slippery quantity, which caunot
be meaningfully localized.

A Afeature of the present proposal for gnautum state reduction is to lake ad-
vantage of this shpperiness in order to evade an energy problem that secms to he
an essential feature of any model of state reduction in which that process is taken
to be a “real” phenommenon. Basically, if “quantun juiips” ave ianken to he real,
then the mass-energy distribubion in a system undergoes local violidions of energy
couservation when the jumps oceur, In the original reduction scheme due to Ghia
rardi, Rimini, and Weber?2 (GRW), for example, there is asmall energy violation
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involved in the “hits” that offect the reduction process. One of the physical ingre-
dicuts of the present schene is that there is the potential possibility of dovetailing
one of these energy problems with the other - that of classical gencral relativity
with that of quantum state reduction - so that a consistent overall scheme may be
obtained. At the time of writing, however, T have not worked out the details of how
this dovetailing is fully to take place. Tt should be pointed out, moreover, that the
gravitational variant of the GRW schewme put forward by Didsi'™ has considerably
more serious energy problemns than the original GRW scheme - to the extent that
it is in gross conflict with observation, as was pointed out by Ghirardi, Grassi, und
Rimini®. Thesc three suthors suggested a modification that removed this obser-
vational conflict, but at the expense of introducing an ed hoc purincter that was
not present in Didsi’s proposal. The present proposal differs from that of Didsi,
though it has a munber of features in common with it. More details will need to be
sorted out boefore it ean be ascertained whoether, within the scheme of ideas that T
am setting forth here, one can construet a detailed proposal that is completely free
of such energy problems,

In the weantime, we can ab least examine the orders of magnitude that arise with
the present scheme. Let us first take note the valnes of some of the standard physical
units in terms of the dimensionless Phacking ones (for which G — b - 1):

sevond — LY x 10%, day == 1.6 x 1041 year — 5.9 x 10°0,
wetre = 6.3 x 0%, em - 6.3 x 10%, mieron = 6.3 x 1028,
radiug of nueleon — 10", mass of nucleon = 1071,
gram = 4.6 x 10%, erg ~ 5.2 x 10717, degree Kelvin - 4 x 1079,
density of water = 2 x 10°™

If we consider o uniforin sphiere of radiug o and mass 1 whose stade is gradu-
ally evolved into o superposed stiate of two different locations, separated from one
anotlicr by a distance comparable with their radiug o, then we find o gravitabional
sclf energy E) Tor the difference hetween the two mass distributions, which is the
order of

Bomfa
Thus, according to the proposal T am putting forward, this superposed state is

unstable, and would decay into tlie state in which the spliere s edther in one location
or in the other, in o thne (half Life) that 1s of the general order of

T - afm

Iu ters of thie density p (assumed aniform) and radiog a of the spliere, this is very
rouphly

——— e
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T = 1/(10p*a®).

Now consider various examples. For a nucleon, assuming its radius to be its
Compton radius

T = 10M/107 = 107

> willion years.

Since ordinury luboratory experiments take place in time scales that are muck less
than this, there is - according to the present scheme - no danger of any diserepancy
with the predictions of standard quanium theory for a quantum system cousisting
of just a few nuclenr particles. ln particular, the results of ueutron interferenee
experiments are not contradicted, For a droplet of water, of radivs o, we {ind,
upproximately,

T 10" ®

$0 we get, very roughly,

5

T =10 days, i «-- 107 cm
T 107" secondy, i w= 107" em - | mieron

T 1078 seconds, i o= 107% e,

Thus we see that, in a sense, o “urnover” from quantinm to elassical hehaviour
oceurs ab rotgghly o micron’s seale, These figures, and other related ones, are not at
all unreasonable. They do not seem to contradict anything obvious about quantn
or classical behaviour,

In making this statement, T am taldng indo awceont bwo factors that T hiave not
mentioned so far, The fivst is that in the above estimates T have treated the bodies as
uniform objects, nud not as composed of individual wtomie particles. In fact, in any
ordinary situation of a superposition hetween two mass distributions, one of whiclt
is a rigid translation of the other, the granadar (atomic) nature of the distributions
turns oul not to bhe important for the caleulition of the reduction rate. Bul we can
also consider a different type of situation: where we have a superposition of two
miass distributions which do not differ macroscopically al all. lnstead, it is now Lo

be their submicroscopic constituents thaé are located differenily in the two states.
Depending wpou the nature and the smonnt of movement of these constibuents, we
find in this situation that, tor an equal reduction rate, the total size of the material
that is involved i the superposition would tend to be somewhat larger  hut not
enormously larger - than that considered above,

N S——
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Sccondly, these considerstions are important when reduction occurs because
the environment becomes entangled with the quantum system that is under study.
Indeed, according to the present proposal, in any practical situation that one can
casily envisage at the moment, it would indeed be the disturbed environment that
effects the reduction. Thus we obtain nothing different from the conventional picture
of state-vector reduction, in which it is the “decohcrence” caused by the environment
that causes the reduction - except that now the reduction must be considered as a
real physical effect, not just something that takes place “for all practical purposes”
(John Bell’'s “FAPP” ). It would, no doubt, take a delicately organized experimental
set-up to detect any differences between the present proposal and conventional
quantum mechanics. Never.heless, differences would be detectable in principle. One
would necd to arrange things so that some “large” quantum system can remain
isolated from its surroundings for sufficiently long that, according to the prescut
scheme, state reduction should take place spontancously within that tiune-scale,
entailing a loss of phase coherence. On the other hand, standard quantum mechanics
would demand that such coherence would be maintained for as long as the system
remains isolated.

Finally, it should be remarked that these considerations leave us a long way from
an actual theory of gravitationally-induced state-vector reduction. The difficultics
of providing a coherent picture of the reduction in aecordance with the prineiples
of relativity are well known, and were stressed many years ago by Yakir and his
colleagues,
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A NON-POLARIZATION EPR EXPERIMENT : OBSERVATION OF
HIGH-VISIBILITY FRANSON INTERFERENCE FRINGES

Raymond Y. Chiao, Paul G. Kwiat, and Aephraim M. Steinberg
Department of Physics, University of California, Berkeley, CA 94720, U. S. A.

One of us (R. Y. C.) will review a serics of experiments recently conducted at Berkeley, including
the “quantum crascr” and a “‘dispersion cancellation™ experiinent, and culminating in the Franson
experiment, in which a violation of a Bell's inequality for cnergy and time by morc than 16
standard deviations is implied. We conciude that, unlike Yakir, pho'~ns do not possess wel’
defined birthdays.

1. Introduction

In this talk, I shall briefly review the Einstein-Podolsky-Rosen (EPR) “paradox” 1,
and then describe some of our recent experiments at Berkeley in light of this so-called
paradox: (1) the *quantum eraser” 2, (2) a “dispersion-cancellation” effect in two-photon
interference3, and (3) the Franson experiment4, 5, which involves the nonlocai interference
of photon pairs. Let me begin by stating my belief that there is no true paradox to EI'R,
since there are no genuine cor.radictions, either internally in logic, nor externally with
experiment. (Perhaps a better i:ame would have been “the EPR effect.”)

The EPR effect involves the interference of two spatially separated particles which
are generaied by a decay from a common source S in the following geometry:

Particle 2 Particle 1

D2 D1

Source

Figure 1. EPR experiment

The two particles are measured by means of analyzers (Al, A2) and detectors (D1, D2). In
the Bohm version of the EPR effectd, for example, a spin-0 particle decays into two spin-
1/2 particles in a singlet state

lSinglet> = IT1>“’2> - IT2> |J’1}}'

1
'_J’Z'{
The analyzers Al and A2 arc Stern-Ges polarizers. Optical versions of this experiment
performed by Freedman and Clauser, w. by Aspect et al, used photons in place of the

247
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spin-1/2 particles, and linear polarizers (P1, P2) in place of Stem-Gerlach polarizers?. 8.

T T
,~ @W@mmw-»%} D
P2 P1 D1

Figure 2. Optical version of EPR experiment

D2

The coincidence count rate as a function of the relative angle between polarizers P1 and P2
is a measure of the correlated behavior of the two separated particles, Bell? derived an
inequality starting from two very general and seemingly reasonable notions which were
introduced by EPR, namely, locality and reality. This inequality is violated by the 100%-
visibility sinusoidal fringes predicted by quantum mechanics, however. Most importantly,
experiments teveal a sinusoidal variation of the coincidence rate in agreement with
quanium mechanics, and in violation of this inequality (modulo some reasonable auxiliary
assumptions). Therefore, these experiments rule out all local, realistic theories.

Early experiments relied on the correlations of the polarization (i.e. an internal
degree of freedom) of the particles, whereas the Franson experiment relies on the
correlations in the energy and the time of emission (i.e., external degrees of freedom) of
the particles. These external degrees of freedom are very similar to the momentum and
position of the particles considered in the original EPR paper. Since the predictions of
quantum mechanics are so strange, it is critical to investigate them for these cxternal
degrees of freedom as well as for the internal ones. Rarity and Tapster have already done
so for momentum and position10, We have recently done so with energy and time.

2. Entangled states

Schrodingerll, in response to the EPR paper, pointed out that at the heart of these
nonlocal effects is what he called “entangled stat 5" in quantum mechanics, i.e. coherent
sum: of product states which are nonfactorizable, For if a two-particle wavefunction were
factoiizable,

wx1, x2) = x(x1)x(x2)

then the probability of joint detection would also factorize,

lwxi, xP = eGP R

so that the outcomes of two spatially separated measurementy are independeiit of onc
another. In cases where quantum mechanics predicts correlations in the behavior of
distantly separated particles, this means that the two-particle state cannor be factorized as
above. The Bohm singlet state mentioned above = a gnod example of an entangled state,
since it is nonfactorizable, and leads to correlations in polarization measurernents on remote
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particles. Though each particle considered individually is unpolarized, the two particles
will always have opposite spin projections when measured along the same quantization
axis. For different choices of the axe:  1ese projections are incompatible observables and
therefore cannot have definite values siunltancously. But these correlations persist even if
the particles and their analyzers are separated by space-like intervals, implying the existence
of nonlocal influences. Another good example of an entangled state is the Slater
determinant:

vi(x1) yilxa)

Wk yaley) |~ ViUV = Wil ¥a(y)

which predicts correlatu behavior between scparated fermions.

In ow experiments, the entangled state we start with is the energy-entangled state
of two photons produced in a two-photon decay process known as parametric
fluorescence. The Feynman diagram for this process is

Y,
- @R
NNNNNS

Y,

Figure 3. Two-photon decay from one photon

and the state of the two-photon system after decay from a parent photon of a sharp energy
Eyis given by

XY

|2 photons) =ff dE\dE; 8 (Eq ~ E) — Eg) A(E, , E2) | E;> | Ep.
00
Instead of a sum, as in the Bohm singlet state, we now have an integral, since energy is a
continuous variable. The meaning of this energy-entangled state is that after the

measurement of the energy of one photon results in a sharp value Eq, there is an
instantaneous collapse to the state

|E> (Ko —Er> .

This effect has been seen in an earlier experiment12, in which dvincidences are recorded
between photon 7Yy, which passes through u Fabry-Perot filter (to measure its frequency,

and hence its energy, with finite but high resolution), and photon Y2, which passes through
a Michelson interferometer (to measure its width); when photon 7Yy is detected after the
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narrow-band filtcr, photon 7y, collapses into a wave packet whose coherence length is far
greater than that of the uncollapsed state,

3. The two-photon light source

The two-photon decay occurs inside a crystal with a 2(2) nonlinearity (we used a
potassium dihydrogen phosphate, or “KDP,” crystal) by the decay of a singls photon 1
produced by an ultraviolet laser (a single-mode argon ion laser at 351 nm) into two red
photons yj and ¥5 ncar 702 nm, in a process known as “parametric fluorescence” or

“parametric down-conversion.” This process is the reverse of second harmonic generation,
in which two red photons combine to form an uliraviolet photon at twice the frequency.
Energy and momentum are conserved here:

ED=E1+E2
Po=p1+ P2

@
IAVAVAVAVAV A, - B §

nonlincar crystal

Figure 4. Feynman diagram for parametric down-conversion

--virtual level

E, VEI

Rt St virtual level

E,

Y

Figure 5. Energy and momentum conservation for parametric down-
conversion

The parent photon 1y is called the “pump” photon, daughter photon 7; is arbitrarily called
the “signal” photon, and daughter photon ; the “idler” photon,or historical reasons. A

rainbow of colored cones is produced around an axis defined by the uv laser beam, but
pairs of photons on opposite sides of the cone are always correlated with each other, e.g.,
the inner “square” orange photon with outer “squarc” deep-red photon, etc,
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Ultraviolet
pump beam e -
=~ —
-~ o
A

KDP crystal

Figure 6. Cones produced in parametric fluorescence. Matching shapes
represent conjugate photons, while each ring represents a different color.

The two “conjugate” or “twin” photons are always produced essentially simultaneously in
the two-photon decay. They have been observed to be “bom” within tens of femtoseconds
of each other, They are produced in the entangled state of energy described above. Due to
the fact that there are many ways to partition the energy of the parent photon, each daughter
photon has a broad spectrum, and hence a narrow wave packet in time. However, due to
their entanglement, the sum of the two down-converted photons have an extremely sharp
energy, since by energy conservation, they must add up to the encrgy of the parent uv laser
photon. Thus the difference in their arrival times, and the sum of their energies can be
simultancously known to high precision.

4, The “Quantum Eraser”

We have used this nonclassical light source for a “quantum eraser” experiment.
The idea of the quantum craser was recently discussed by Scully, Englert and Walther}3 in
connection with the micromaser. Here I present a simpler version of this idea. Consider
Young's two-slit experiment from a particle viewpoint.

st
lumumlmmulmlmn
“

Figure 7. Young’s two-slit experiment

The reason one sees interference at the screen is that one cannot know, even in principle,
which path (A or B) the particle took on its way to the screcn. The lack of this “which
pail” informaiion is fundamenial to the observability of lnieiference fiinges. owever,
suppose we placed two circular polarizer : of opposite senses, CP1 and CP2, in front of the
two slits,
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Figure 8. Young's two-slit experiment vith circular polarizers CP1 & CP2

The photons which have passed through these circular polarizers are now labeled by their
polarizations, so that by measuring their helicities, one can know which path the photons
took to the screen, Hence we shall call these polarizers “labelers.” Since we now have
“which path” information, the interference pattern on the screen disappears. (Note that the
center-of-mass motion of the particles is in no way disturbed by the insertion of the circular
polarizers, so that this scheme is very different from Feynman’s14, where the scatering of
a particle near onc of the slits uncontrollably disturbs its center-of-mass motion). Now let
us “erase” the “which-puath” information by the insertion of a linear polarizer LP in front of
the screen.

% o ;
" ¥
S *“""“"""m"“ " - \ LU
LTI LU
|-mouulmumnum.. B [" "“m,”wuu'"‘"""“'

g
£
CP2
"Labelers" "Eraser"

Figure 9. Young’s two-slit experiment with circular and linear polarizers

The linear polarizer now erases the handedness of the photons, which served as their
labels. Since “which path” information is now no longer available, the interference pattern
is now revived.

This particular version >f the “quantum eraser’ has a straightforward classical-wave
explanation. Hencr we decided to use instead the nonclassical two-photon light source
described above, in conjunction with the Hong-Ou-Mandel (HOM) two-photon
interferometerl5, to demonstrate a *quantum eraser’” which had no classical analog. In this
interferometer, the two “twin” photony are brought back together by means of mirrors, so
that they impinge simultaneously on a 5(0/50 beam splitter, after which they continue on to
the two detectors D1 and D2,
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coincldence

counts
D1
(2)
AWV X- x I Beara Splitter 35 18
D2 >
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Equal delny of the
rzl:: twu photons
Length

Figure 10. Hong-Ou-Mandel interferometer

The coincidence rate recorded by these detectors is observed ta go through a sharp dip as
the path length difference between the two photons is scanned by the x-motion of the beam
splitter. The width of this dip in our experiments is typically tens of femtoscconds. The
narrowness of this width allow: very high resolution in time-of-flight comparisons
between the two photons. In an experiment we have recently completed, but will not report
on here, we huve usea this high temporal resolution to measure the time it takes a photon to
tunnel across a barsierl6, 17,

In order to understand this interference effent, we shall use Feynman’s rules for
interference: List all possible processes leading to the same final outcome. Here, the
possible processes for the two phiotons at the beam splitter are:

(1) Both photons are transmitted; the outcome: a coincidence “click” of D1 and D2,

(2)&(3) One photon is reflected, the other transmitted; the outcome: no coincidences.

(4) Both photons are reflected; the outcome: a coincidence “click” of D1 and D2,

Next, draw all the indistinguishable “paths,” or Feynman diagrams, l=ading to the same
final outcome, add their amplitudes, and then take the absolute squace. Here, coincidence
detection processes (1) and (4) are indistinguishable, and thus interfere:

Reflection-refection Transmigsion-transmissi

KA

ampijiude = A_. L=

1
V2 V2 2

Figure 11, The two indistinguishable processes leading to coincidences

amplitude =-1—- ~1——-=

N
N}
b=

Because of the phase fuctor of i in the reflection amplitude for a single photon relative to its
transmission amplitude (this is a consequence of time-reversal synimetry applied to the
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behavior of a single photon at a lossless, symmetric beam splitter), a destructive
ir terference of the “reflection-reflection” and “transmission-transmission” probability
amplitudes occurs. Hence the total amplitude for coincidences to occur is (-1/2 + 1/2) = 0;
Coincidences never occurl In other words, the two photons always exit the same port of
the beam splitter whenever the path length difference is zcro, i.c., if the photons arrive at
the beam splitter simultaneously. However, processes (1) and (4) become distinguishable
if the photons arrive at the beam splitter at different times. Hence as the path length
difference is scanned, we map out the shape of the photon wave packets. The width of the
dip is thereforc a measure of the coherence length of the single-photon wave packets.

A schematic of our version of the HOM interferomcter is the shown in the
following figure:

cylindrical
Argon KDbP lens
lon luser T T

—
——
trombone /" [ ¥1
prism i 1 ﬂ'lm F ool
- /‘ I cuinc.
\ / beam splitter | counter
{- (D
K2

Figure 12. Hong-Ou Mandel interferometer (UCB version)

The mechanism which we used to adjust the path length difference is the “trombone arm,”
shown in the above figure, consistine of a “trombone prism,” which is a right-angle
(Porro) prism, mountcd on a translation stage, to reflect one of the photons in & trombone-
like (or optical delay-line) geometry., This is a technicul improvement of the HOM
interfcrometer tirst implemented by Rarity and Tapsteri8. A typical coincideace “dip” is
shown in the next figure:
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Figure 13. Coincidence rate versus trombone prism position

Now we come to our version of the “quantum eraser” experiment.  As in the
sitnpler Young's experiments described earlier, we use polarization as a meuns of
“labeling” the photons, so that we could keep track of “which puth” each photon took. The
two win photons emerge from our nonlinear crystal with horizontal lingar polarization. Let
us add to one arm of the interferometer a “labeler” in the form a half-wave plate (IIWP),

{2h can rotate the polarization of the photon to vertical polarization. This clearly enables
us in principle to distinguish which path this photon tukes, and therefore serves to give us
“which path” information. The “crasers” tuke the form of two polarizers, Pl und PZ,
oricnted at 45 degrees to the vertical, in front of the two detectors.

cylindrical
Argon Kby lens
fon laser i T

HWP

"labeler”
-
trombone /f* r
prism N
‘\/ lllm splltter
)

Figure 14. Hong Ou-Mandel interferometer with “labeles” and “erasers”

If the erasers were removed from the above apparatus, the “which path” information,
which we could in principle obtain from the polarization of the two photons, would
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destroy the interference pattern. It should be stressed that it is the mere possibility of
obtaining “which path” information, which destroys the interference pattern; no actual
measurements of the polarization of the photons after the beam splitter need be made. In
the next figure, we show the disappearance of the coincidence dip, in the absence of P1 and
P2, as we rotate the fast axis of the half-wave-plate towards 45° with respect to vertical, at
which poin: the rotation of the polarization of the transmittcd photon is 90°, which makes
the interfering paths fully distinguishable. (Intermediate orientations of the half-wave plute
are also shown).

250

5 200 Nomrmtetiaiiiyn eeteteuneena AR
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Figure 15. Coincidence rate vs, trombone prism position with “labeler” in
setup, but without “erasers”

Now we put in the erasers P1 and P2, By oricnting both of them at 45° (o the vertical, we
can crase the “which path” information, since both horizontally and vertically polarized
photons end up polarized at 45° after passing through thesc polarizers, and we lose the
ability to distinguish, even in principle, between the paths taken by the photons. The result
is that the interference pattern, i.c., the coincidence dip, is now “revived,” as shown by the
data represcnied by the syuares in the following figure:
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Figure 16. Revival of interference after crasure

Note that the presence of both polarizers P1 und P2 is necessary to perform the erasure,
The removal of either of them would leave one of the photons labeled, carrying enough
“which. path” information to totully destroy the interference pattern. An interesting feature
of this experiment is that one can change the coincidence dip into a coincidence peak (i.c.,
an interference minimum into a maximum), by rotating P1 relative to P2 untl one is ut +45°
and the other is at —45°. The data for this orientation (along with tho:c for an intermediate
orientation) are represented by the diamonds in the ubove figure. (We have also checked
that the center of the coincidence dip is a sinusoidal function only of the relative angle
between P1 and P2, which Shih & Alley and Ou & Mandel have already observed in
connection with Bell’s incquality experimentsl?, 20). Since the resulting interference
pattern (dip, peak or something in between) in the end depends on our choice of the
settings of P1 and P2, we have nicknamed this effcct the “quantum editor.”

These effects underline the fact that in quantum mcechanics, interference only oceurs
between processes which could not be distinguished from onc another even in principle.
That is, the final staie of the entire systemn must be considered, including all patticles which
may have interacted with the interfering purticle(s), and both internal and extemal degrees
of freedom. While this fact is a central componcent of standard quantum mechanics, it is
often neglected, though frequ: ntly without ill consequences. It is crucial, however, for
understanding the other experiments described below.,

5. Dispersion-cancellation effect in two-photon interference

As a motivation for the “dispersion-cancellation” experiment, let us return for a
moment to the classical problem of propagation in a dispersive medium, We know that the
peak of a classical electromagnetic wave packet propagating, through a piece of glass will
travel at the group velocity, but it is not entirely clear that one can interpret this classical
wave packet as if it were the “wavefunction” of the single-photon, and use the Born
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interpretation for this “wavefunction.” If this intcrpretation were to be correct, then the
photon would most likely travel at the group velocity in this medium. However, as
Sommerfeld and Brillonin have pointed out2!, at the classical level there already are five
kinds of propugation velocities in a dispersive medium; the phase, group, energy, signal
and front velocities, all of which differ from the cach other in the vicinity of an absorption
line, where there is 4 region of anomalous dispersion. In particular, the group velocity can
become “'superluminal,” i.e., faster than the vacuum speed of light, in these regions. If the
photon were to travel at the group velocity in this medium, does it also travel
“superluminally”? If not, then at which of these velocities does the photon travel in
dispersive media? (We have been studying these questions in the context of photon
tunneling times, but shall not discuss them here.)

Motivated by the ubove questions, we did the following experiment. Let us remove
all the polarizers in the “quantum eraser” setup, and return the original HOM
interferometer. Now let us insert a piece of glass in the path of one of the photons:

‘/ghlSS (1)

% @ N

beam splitter

d)

D2

"trombone"
prism

motion

Figure 17. Simplified Hong-Ou-Mandel schematic with glass inserted

This glass slows down the photon which traverses it, and in order to observe the
coincidence dip, it is necessary to introduce an equal, compensating delay in the other arm
of the interferometer, by adjusting the “trombone” prism. We measured the magnitude of
this delay for various samples of glass and were able to determine traversal times on the
order of 40 ps, with 4 fs accuracy. In this way, we were able to confirm that single
photons travel through glass at the group velocity in transparent spectral regions, an
interesting example ot particle-wave duality.

Let us consider for a moment the limiting resolution of this measurement technique.
‘The interest of meusuring optical delays is greatest for medin with dispersion. In dispersive
media, however, the broad spectrum required for an ultrafivit pulse (or single-photon wave
packet) cun lead to a great deal of dispersive broadening. One might expect that this
broadening of the wave packet would also broaden the coineidence dip in the IIOM
interferometer, since the width of this dip is a measure of the size of the wave packets
which impinge on the beam splitter.  For cxample, one expects a 15 fs wave packet
propagating through half an inch of SF11 glass (which we used in our experiment) to
broaden to about 60 fs due to the dispersion in this glass. The nature of the broadening is
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that of a chirp, i.e., the local frequency sweeps from low io high frequency (for normal
dispersion, in which redder wavelengths travel faster than bluer wavelengihs). Hence the
earlier part of the broadencd pulse consists of redder wavelengths, and the later part of this

pulse consists of bluer wavelengths:
SF11 glass

18 fsec ~ 60 fsec Chirped pulse ls

broader and has a
lower amplitude.

blue -- green - red

Figure 18. Chirped pulse due to normal dispersion

In our experiment, however, we found that the combination of the time-correlations
and energy-corrclations exhibited by our entangled photons led to a cancellation of these
dispersive effects, While the individual wave packet which travels ¢ h the gluss does
broaden according to quantum mechanics, it is impossible to know wicther this photon
was reflected or transmitted at the beam splitter (recall Figure 12). This means that when
an individual photon arrives at a detector, it is unknowable whether it travelled through the
glass, or whether its conjugate (with aniicorrelated frequency) travelled through the glass;
due to the chirp, the delay in these two cases is opposite (relative to the peak of the wave
packet). An exact cancellation occurs for the (greatly dominant) linear group-velocity
dispersion term, and no broadening of the 15 fs interference dip occurs. This is a direot
consequence of the nature of the EPR state, in that it relies on the correlations in one
observable (energy) to maintain a high degree of accuracy in measuring an incompatible
obscrvable (time)!

argon lon

KDP crystal
uy laser

cyl. lens

glass sample
(length L)

(optical delay 1)
——

trombaone prism [ ) ¥
\ o3
] colnc,
eam splitter Uy |counter
D1
] ]
11

Figure 19, Dispersion eancellation experiment

The apparatus used for this experiment is shown in ‘thc above figure. It is
essentially the same as that for the quantum eraser, minus all polarizing elements, but plus
the glass sample in one of the armg of our version of the HOM interferometer. The
resulting coincidence dips with and without the piece of glass wre essentially the same
shrpe, as can be een by comparison of the following data (the dashed curve cornesponds
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to a theoretical 60-fs-wide wave packet)
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Figure 20. HOM coincidence dips with glass (left trace) and without glass
(right trace)

We sce that there is indeed very little broadening in the data with the glass corpared
with that without the glass, Certainly, broadening on the scale of 60 fs (the dashed curve)
is ruled out by these data, A detailed theoretical analysis predicted these results, in
agreement with the simple argument presented above?2. This result is important for
applications, ©.g., in our tun:  ling-time measurement, since the sharpness of the dip-- and
hence the temporal resolution-- is not appreciably degraded by the presence of dispersion in
the optical elements of our apparatus or in th.e sample itself. One lesson lcarncd from these
experiments is that the coherence length of the wave packet is not equal to the width of the
wave pucket, as was also demonstrated by neutron interference experiments.

¢. The Franson experiment: Interference between two photons in separated
Mach-Zehnder interferometers

Let us begin with the conclusion which we reached from the Franson experiment:
A violation of a Bell’s inequality for energy and time is implied, thus photons do not
necessarily possess a well-defined energy (or color), nor do they possess a well-defined
time of emission (or intrinsic age), prior to detection, (As an aside, wc note that this
contradicts the basic assumption of kinetic theory, viz., that particles carry definite physical
propertics, such as energy, as well as the basic assumption of this conference, viz., that
one can celebrate a birthday at a well-defined time). Our experiment, which is sketched in
the following figure, was first proposed by Fransond.
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Figure £1. The Franson experiment: The interference of two spatialiy
separated phaotons in two Mach-Zehnder interferometers

As in the original EPR paper, a source § emits two particles in opposite directions, but *h -
new feature here is that they enter two identical Mach-Zehnder interferometers, in wh
they are allowed to take either a short path or a long path. These interferometers can have
their path length differences adjusted by means of phase shifters inserted into their long
paths,

There is no first-order interference of a single photon wave packet with itself inside
either inter{erometer, hecause the width of the wave packet (which is on the order of tens of
femtoseconds in our experiment) is much too small to permit any overlap of the transmitted
and reflected portions of the wave packet at the final beam splitter. However, there is a
second-order (i.e. two-photon) inerference observable in coincidence detection at detectors
D1 and D2.

Again, we shall use Feynman'’s rules for interference to calculate the probability of
coincidence detection. The indistinguishable processes here are (1) the “short-short” and
(2) the “long-long” processes, (where in (1), both photons take the short paths of their
raspective interferometers, and in (2) they both take the long paths). The distinguishable
procusses are (3) the “shont-long™ and (4) the “long-short” processes, since the “clicks” of
D1 and D2 are not simultancous in these two nrocesses. In principle and also in practice,
we are able to rejuct these distinguishable “clicks” by using sufficiently large path length
differences in the two interferometers, and a sufficiently narrow coincidence timing
window in our elcctronics, We are thus left with the two indistinguishable processes (1)
and (2) only, for which we must first add the probability amplitudes, and then take the
absolute square, Hence the probability of a given coincidence detection is given by the
expression

Poo|11 + eitreitaf

where the firs" term inside the absolute value carresponds to the “short-short™ process, and
the second term to the “long-long” process. (The team splitters are assumed to be 50/50
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thronghout.) Here the phase ¢ (¢2) represents the total phase difference between the long
and short anins of the left (right) interferometer. Simplifying this expression, we get

Pe e [1 + cos (¢ +¢2)] .

Note thart this implies a fringe visibility of 100% (i.e., perfect zeros at the minima in
coincidence detections). Bell's inequality for this experiment implies (when certain
reasonable auxiliary assumptions are niade) that sinusoidal fringes can have at most 70.7%
(=1/#Z) visibility.

Qur apparatus is sketched in the following figure, In the second figure, we present

our data: 2)
l( crystal
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A I do-t-op
2 F2

Figure 22, Apparatus used at Berkeley to perform the Franson experiment
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By analysis of these data, we concluded that Bell’s limiting 70.7% visibility is ¢xceeded by
16 standard deviations.

The mecaning of the maximum is that the two spatially separated photons alwayy
behave in a correlated fashion at the final beam splitter, i.¢., if one is transmitted, then the
other is also transmitted; and if one is reflected, then the other is also reflected. The
meaning of the minimum is that the two photon “twins” always behave in an anticorrelaied
fashion at the final splitter, i.e., if one is transmitted, then the other is reflected, and vice
versa, The behavior of the “twins” depends on the settings which we choose fur the
space-like separated phase shifters (which we could in principle set even gfter the phitons
had entered their separate interferometers23). Also, it should be emphasized that the fact
that these interference fringes were observed means that one does not know, even in
principle, the actual age of the “twins” upon their arrival (i.e. detection) for otherwise the
“long-long” and “short-short” processes would become distinguishable, and the
interference pattern would disappear.

As a final remark, other papers at this conference addressed the question of whether
pure quantum states can evolve into mixed states in black hole evaporation. A ciosely
related question is whether mass is a local, realistic property of a black hole. Let us
consider the following photon pair-creation process arising from 2 vacuum fluctuation at
the event horizon of a black hole:

black e event horizon
hole '

Y2

pair creation
of photons

R

Figure 24. Photon hair creation at the event horizon of a black hole

The left-going member of the pair falls into the black hole, whereas the right-going member
escapes to infinity, Since energy is conserved in this system, the mass of the black hole is
entangled with that of the photon which escapes to infinity, and the entire system is in an
entangled state. In light of the violation of Bell's inequality in our experiment, it may be
forbidden to ascribe any weli-defined mass to the black hole until this right going photon is
detected, i.e., it may be incorrect to think of the mass of the blagk hole as a local, realistic
quantity until it is observed. Einstein and Bohr had a similar discussion (though not in the
context of black holes) at the 1930 Solvay Conference?4.
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ABSTRACT

Using multiport beam splitters it will be possible to study Einsicin-Podolsky-Rosci
corrclations in higher dimensional Hilbert space. As an explicit example we present the
design and thoory of a tritter, which is a multiport beam splitter with threc input ports and
three output ports, such thut any amplitude ircident at onc input port is distributed cqually
over the output ports. We will then show the results for a two-photon, two-tritter experiment,
where novel Einstein-Podoisky-Rosen correlations occur.

1. Introdaction

All experimental work concerning the Finstein-Podolsky-Rosen Paradox' and Bell's
theorem? thus fur is restricted to two-particle (in most cases two-photon) entangled statcs
where the correlations can effectively be described by restricting the analysis to a Hilbert space
of dimension 2 for each particle. These states can be two polarization states as proposed
initially by Bohm® and first employed in an experiment by Freedman and Clausei, they can be
two momentum eigenstates as in the experiment proposed by Home and Zeilinger® and per-
formed first by Rarity and TapsterS, or, they can be two states which took beam paths of
markedly different length on their way from the source to the detector as proposed by
Franson’. This latter experiment has now been performed by various groups®, the most con-
clusive experiment which showed a striking violation of a Bell-typc inequality is due to Kwiat,
Steinberg and Chiav®.

There are twe obvious routes for generalization. One is to consider morc than two
particles, the other is to analyze the case of more than two states available to each particle.
The generalization to more than two particles has led to some new insight into the difference

*  Ponnunent address: Institute af Theoretical Physics and Astrophysics, University of Gdansk, P1,-80952
Gdansk, Poland
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between quantum mechanics and local realistic theories'®. But, due to the unavailability of
coherent muiti-particle sources this has not as yet resulted in an experiment. )

In the present paper we would like to focus our analysis on another generalization.
This is the case where each particle has more than two states available. The correlations are
then defined in Hilbert spaces of higher dimension!!. It is obvious that a possible route to
generalizing EPR correlations to systems of higher dimension would be to investigate spin
correlations between particles with spin-1 or higher (with the cbvious and notable exception of
the photon or other massless particles which have only 2 polarisation states.) Again, since at
present there exist no sources for correlated particles of higher spin, such investigations based
on spin correlations are purely theoretical to date!2.

This paper shows how to obtain such EPR correlations in more than two dimensions in
real experiments. Such sxperiments are based on both the availability of parametric down-
conversion as a source for highly correlated two-photon states'> and on the use of multi-port
devices™. Finally, we present some theoretical predictions for the novel correlations expected.

2. The Beam Splitter as a Four-Port Device

The beam splitter is a central element of many experimments in quantum optics. A
genersl beam splitter has two input ports and two output ports (Fig. 1). Formually it may be
described by a unitary operator in a two-dimensional Hilbert space. We should uote here that
for the present paper we deliberately adopt an explicit Hilbert space formalism because it is
equally well suited for describing a beam splitter operating for any type of particle, be it
electrons, photons, atoms or neutrons, to name just those types of radiation for which quantum
interference experiments with beam splitters have been performed so far,

Fig. 1: A general bet.n splitter has two input ports and two ouiput ports.
The general beam splitter pure input state is a superposition
lw>= w,ja>+wlb> M

where |a > and |[b> describe a particle in beam a or b (see Fig. 1) respectively. We assume
the normalization y, w, *+w, w,*=1. Likewise the general output state is the superposition

W' >= yila’ > +yplb > @

in obvious notation. Input and outpat states may cqually wel' be written in matrix notation as
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) ()
¥ W 3)
The general beam splitter operator U then couples ¢ to y, ¥/ = Uy with U =1.

We restrict ourselves now to 50-50 beam splitters. This means that a particle incident
at any of the two input ports of a symmetric beam splitter has the same probability p=1/2 to
be found in any of the two output ports, It is well known that such a beam splitter is defined

only up to arbitrary phase factors in the input and output ports?.
Two possible 50-50 beam splitter operators are for example

1 1 1 _ 1 il
o4l) 2) o ool )

where U, represents a time-symmetric beam splitter and U, represents a spatially symmetric
one. The two beam splitters can be converted into each other using # phase shifts in one input

and onc output port, i.e.
U = -i 0 . 1 0
Lo 1) e i) 5)

The two beam splitter operators imply different transition rules for incident beams,
These are

|ay = 7%{ lay+lp'y}  [py=> 713.{|a' y—|6"} for 17,,
oy => ‘—/12,{; o+t = j}g{lﬂ'ﬂilb’)} for U,. 6)

The first beam splitter implies no phase change upon reflection from one side while reflection
from the other side implies a phase change ot xt. 'The second beam splitter operator implies
that both reflected beams acquire a phase shift of /2 upon reflection,

We note here that beam splitters are just special cases of 4-port devices. Another
example of a 4-port device would be a Mach-Zehnder interfercmeter.

3. Two-Particle Two-State Systems

Using these rules it is now easily possible to calculate the results of a two-particle two-
state EPR-Bell experiment as shown in Fig. 2 A source emits two particles in the state

LT
vy =g llle) +1bY)} ?

— e e e —
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Fig. 2! Principle of o two-particle, two-state EPR-Bell experiment using beam splitters.

Here and below the first ket in a product always refers to particle 1 and the second to particle
2. Also, e.g,, la)|c) implies the tensor product |a>®|c) ctc. The beamns a, b, ¢, d may then be
subject to the phase shifts &, g, y, 0 such that the statc becomes

1 (47}
- at aMe) 4 )th (8)
lv) =5 {laer+ o) .
with y =+ 8- a—y. Applying now the beam splitter rules (6) and, anulogously,
1 |
C) => —a 0"+’ d) = —=1jc')y— |d’ ©
o= =l ald} = —=ller-jan)
one obtains for the joint probabilities for two detectors to register the particles in coincidence

pla'.c’) = p(b',d") = %cos" (/2
Pa'd') = p¥,¢) = s’ (2]2) (10)
Thus, perfect correlations arise for
¥ =nm. an

For odd n detector «' fires in coincidence with detector d' and detector b’ fires in
coincidence with detector ¢ while for even n the coincidences are a'- ¢’ and # —d'. These
two different types of coincidences are represented in Fig. 3. In other words, for these
parameter settings the path taken by a particle after its beam spliiter is an Einstein-Podolsky-
Rosen element of reality, i.e. firing of any one individual detector for one particle allows one to
predict with certainty which detector will register the other particle.

These perfect correlations can be characterized via a value-assignment procedure
introduced by Bell. The possible results obtained on either side are named A and B, and they
are assigned the values 1. It then follows that the two cases of perfect correlation are
signified by AB = +1 and AR — —1 respectively. We call these values Bell numbers. We notice
that one of the beam splitter ope.ator representations (I/,) just contains Bell numbers (+1 and
-1 for the two dimensionel case). 1t will be seen later that for multiports the generalization of
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Bell's value assignment procedure is quite interesting. Furthermore, in any dimension there are
always multiports whose unitary representation contains only Bell numbers.

A B A B
+1 o +1  +1 -1
-l o—m—— o g -1 +1
AB=+] AB=-1

Fig. 3: Possible perfect correlations for the caso of an experiment us shown in Fig, 2. The results 4, 5 on either
side can be +1 or -1, depending on which detector in which outgoing beam registers a particle, The
perfect corrclations can be significd by cither 4.5 = +lord . B =~ -1,

We should mention that the results of this section are basically known. They were
repeated here in order to prepare the reader for the less familiar situations in the following
sections. An experimer:tally available source which prepares the two particles in the entangled
state of Eq. (7) is a non-linear crystal where through the process of spontaneous parametric
down-conversion an incident photon may split into 2 photons of lower cnergy.

4. The Tritter as an "~ample of a Multiport Device

In this section we ... { introduce the general concept of multivorts and then we give
some explicit examples. A general multiport has L input ports and M output ports® and is
called N-port (N =M +L) . For simplicity we restrict our considerations to symmetric N-
ports which are defined as having an equal number of input ports and output ports
(L=M=N/2) and, furthermore, which operate such that a single particle incident on any
individual input port has equal probability (i.e. p=1/M:=2/N) to be found in any specific
output port. This is the generalization of the gencric beam splitter discussed in section 2
above. We propose to call symmetric multiports "Critters” and specifically a critter with
L =M=3 is called a Tritter, one with L= Af = 4 is a Quitter'® etc.

Lossless symmetric multiports (critters) can be represented by unitary operators in an
M -disicensional Hilbert space. Again, as was the case for the conventional beam splitter, there
are many physically possible critters, but, as opposed to the beam splitter case, it is not always
possible to transtorm all types of a specific critter (i.e. symmetric N-port with a given V) into
each other by merely supplying external phase shifters or relabelling output ports!”.

Let us consider explicitly the triter. The geneal input and output states are (Fig, 4)

TR ADEE AR ALY
o= v.fay+w oy v,

). (12)

or, in matrix notation,

*In general some physical poris can work both as input and output ports (viz. the Michelson interferometcr).
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W" wla
v=ly, and =)y |
v, v, (13)
a a'
b b
c c

Fig. 4. A generic tritfer is devised with threc input ports and three output ports such that an amplitude incident
on any one of the input port exciles any of the output poris cqually.

Again, a unitary operator couples the output state to the input state,
W =Uy. (14)

This unitary operator can now be represented by a 3 x 3 mairix where the modulus of each
matrix element is 1/v_ . Here again and for all critters it is possible to absorb any phase factors
of the first row into phases of the input beams and to absorb any phase factors of the first
column into phases of the output beams, Such a representation of a multiport only contains
1" in both the first column and the first row. We will call such a representation canonical.
Thus, the general tritter operator can be written as

, 11
U=—x *
1
1 o* ¢ (15)

with |¢| =1 and g+ ¢*=—1. The only fwo possible choices for @ are ¢ =« and @= a* with

a=e"k,

Thus the tritter operator has two canonic il representations, either

11 1) ]

1
i i
U, =—=|1 a a| or UL=—=|1
T ﬁ \ J r \/5
a a 1

1

1 1
!

a
a a (16)

The transition rules for incident beams therefore are
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la) = ~]3—{a')+b')+c')}
Ib) = —%{la’) + a'|b'> t az|c')}
lc) = —J%{Ia’) + allb'>+ aic’)} an

for the tritter rule U,.. For U/} the roles of @ and @* arc just interchanged. Note also that
U, = U} and that the two different types of tritter can bo converted into cach other by an odd
number of permutations of rows or columns, c.g.

1
UL =lo
0

-0 O

0
L v,
0 (18)

These results imply that sequential arrungement of tritters does not lead to new
nontrivial tritters. In other words, given some tritter one can obtain any tritter by changing
cxternal phases and by a permutation of input and/or output ports, which may simply be
achieved for example by flipping two output ports. Physically, there are many ditferent
possibilities of realising a tritter, A specific type with parallel input beams and parallel output
beams is shown in Fig. 5. One can essily sce that a tritter has more adjustable parameters than
a beam splitter. These are the retlectivities of the partially reflecting mirrors and the nontriviat
phase in the internal loop of the tritter,

Fig. 5: Possible realization of a tritter using partially reflecting mirrors and a nontrivial internal phase ¢ = 0, .

Turning to higher multiports the number of cxperimentally adjustable nontrivial
parameters grows quadratically with the number of ports. One of the most interesting results
for higher multiports is the existence of distinct clusses which cannot be transformed into cach
other by just changing external phases and by penmutation ol input and/or output ports. We
leave a detailed discussion to a forthcoming paper.

5. Two-Particle Three-State Systems

It is evident that with multiports a large number of novel experiments in quantum optics
become possible. Because of the availability of down-conversion photon sources, we only
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discuss here the case where a two-particle source is cmployed. Assume that such a source
emits two particles in the state

> ey k) )} 19

Again, the first ket in a product state refers to particle I, and the second to particle 2. The
beams a,b,c,d,e, f are subject to the phase shifts a, 3,7, 8,4, ¢, respectively, and thus the
state cvolves into

1=l + o)+ e} oo

with y=f+s-a--Sand ¢=y+{-a—-90.

Suppose now that the three beams excited by particle 1 are fed into a tritter and
likewise the three beams excited by particle 2 are fed into another tritter (Fig. 6). Clearly the
final state is then obtained by applying the appropriate tritter operator Eq. (16) to state (20),
Instead of writing down the final state explicitly, we focus on the count rates and on the
correlations to be expected.

TRITTERB TRITTERA

Fig. 6: Principle of a two-tritter, two-photon EPR cxperinent. In a practical rcalization the source can be
paramctric down-conversion.

The unconditional probability to detect a particle in any of the detectors is a constunt,
¢.g. p(a’)=1/3. The indcpendence of any of the phases inserted between source and tritters is
a consequence of the initial entanglement. Certainly this does not hold anymore for the various
joint probabilities of detecting u particle in a given detector on one side together with detecting
the other particle on the other side. These joint probabilities are:

A dy=p, = ple',e) - ——[3+2e0s 7+ 2cosp+2cos( o~ 1)1,
1
pla’,en = pl . d)=pd, )= 57—[3+2cosz’ 4 2cos¢’ + 2cos{¢’' ~ 1')]
with ¥’ = 74223, @' = p—2xf3

1
pla',fy=pd.e)=p,d)= -,F['.HZcosz” +2co59" +2cop" - x”)]
with 2" = y—2#/3, ¢" = ¢+ 22/3 (21)
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and where, e.g., p(a’,e’) is the probability to simultaneously detect a particle in detector
a’and a particle in detector ¢'.

The joint probabilities of Eqs. (21) have & number of remarkable features. It is easy to
show that all these probabilities are nonnegative and their maximum value is 1/3. This may be
understood by analyzing for example the case where the first equation attains its maximum
value which occurs when y, @ = 2nz. Then p(a’,d")= p(b', f') = p(¢’,e') =1/3 and all other
joint probabilities vanish. This implies that if the phases in the two-tritter two-particle inter-
ferometer are set to these values then perfect correlations arise, and thus Einstein-Podolsky-
Rosen elements of reality may be introduced. Explicitly, if, say, detector a’ fires and the
phases are set to the parameters just mentioned we can predict with certainty that the other
particle will be registered by detector d’. Likewise, if particle 1 is registered by detector
b'(c'), particle 2 will be registered by detector £(¢*). Thus, while it is always maximally
uncertain which detector will register either of the particles, it is known with ccrtainty which
detector will register the second particle once the first particle has been observed, as long as
the phases are set according to the above condition.

Another set of similar perfect correlations arises if the phases are sct such that
2.9 =2nx. Then the joint probabilities are pla’,e’)= p(b',d") = p(e’, f") = /3 with all
others being zero. Here again perfect correlations occur but now between different detectors
than betore. Finally, a third set of perfect correlations arises for y“ ¢ - 2nmz, then
pla’, Y= p(d',e") = p(c',d") = 1/3 with all other joint probabilities vanishing. Fig. 7 shows
these three possible ways of perfect correlations. Note that of the six possible one-to-one
combinations between detzctors on cither side only three combinations are realized for perfect
correlations. Here we should note the fact that these types of perfect correlations arise
whenever we use the same tritter on each side (either the one represented by U, or the one
represented by U]). 1n casc we chose to use different types of tritters on the two sides, the
other three types of perfect correlations occur, with the original three now being excluded.

A B A B A B
Q@ O—— o a o alo. 0 q?
a?  ao

T
ol o o? w? o a
1 :>\D Lot | lo—————2ll
A,Bz_ul A'B=q A'B=+1
FFig. 7: Perfoct corxelations occurring in an cxperiment of the type of ¥ig. 6, The results on cither side arc best
characterized by assigning them the value 4,5 = a, a2 L1, where a = u2 el 3. The three cases of perfect

corrclations occurring arc then significd by 4.5 = «, ot L

The three types of perfect three-state correlations may be signified in the same way by
value assignment as it was done originally by Bell for two-state correlations. One might be
tempted to assign the values +1,0,-1 to the three possible outcomes on each side. Such a
procedure does not succeed because, when calculating the product AB, if 4 is again the result
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for one particle and B the result for the cther, appearance of a “0"-result always leads to
AB =0 independent of which type of coirelation occurs and thus information is lost. A rather
clegant procedure of value assignment is to choose a, o, a® (with @ =e*™") for the three
possible outcomes on either side. It then follows that the three cases of perfect correlations are
signified by AB = a,a’,1 (sce Fig. 7). These numbers are now the Bell numbers for a three-
dimensional Hilbert space.

In general, for the case of correlations between two particles, where each one is defined
in an M-dimensiona! Hilbert space, at most M cases of perfect correlations (where EPR-
elements of reality n-  be introduced) occur with a given set of multiports. It is thus natural
to generalize the procedure just given by assigning the values A,B =& n=12,. .M to
the results in order to signity the cases of perfect correlations by AB =e*™'™  As we will
show in a forthcoming paper there is always at least one case of a specific multiport for any M
where this procedure succeeds. But, we should point out, for M)3 these are also cases where
this procedure fails. Gbviously the case M =2 as analyzed originally by Beil is just the most
simple nontrivial case. This is the reascn why we propose to call these general numbers used
in value assignment Bell-numbers.

Concluding this section we note that besides introducing EPR efements of reality the
way just given, one can also apply a generalized Bell inequality to the two-tritter correlations'®
thus providing the first feasible test for Bell's theorem for pairs of spins higher than 1/2 via an
optical analog.

6. Concluding Comments

In general, an experiment using multiports which are fed the two correlated photons
created in the process of parametric down-conversion provides a generalization of EPR
correlations to Hilbert spaces of higher dimensions. These correlations are fully analogous to
those between two particles with higher spin.  Thus they are expected to give new interesting
results going beyond those realizable in spin correlations hetween two spin-1/2 particles or two
photons. A specific example are those correlations which are necessary to establish the Bell-
Kochen-Specker paradox!®, Using two correlated particles each defined in a higher-
dimensional Hilbert space it is possible to establish the results for each individual measurement
utilized in the Kochen-Specker argument as Einstein-Podolsky-Rosen elements of reality20, It
is evident that using multiports together with a down-conversion photun source can provide
immediate experimental realization of such correlations.

This work was supported by the Austtian Science Foundation FWF, project No. $6502
(Schwerpunkt Quantenoptik), and the US National Science Foundation, grant No. PHY92-
13964.
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TIME AS A DERIVED QUANTITY IN THE MICROMASER

MARLAN O. SCULLY
Texas A&M University, Department of Physics
College Station, Texas 77843

ABSTRACT
Aspects of the radiation-matter interaction in a cavity are re-
viewed. It is found that the concept of time appears as a natural
result of phase shiits experienced due to the atom-field interac-
tion.

Yakir Akaronov’s contributions to, and love for, physics is an inspiration to us
all, It is a pleasure, and an honor, to contribute this ncte to his Festschrift.

One of the cleanest and most interesting experiments in modern quantum op-
tics involves resonant atoms passing through a high Q microwave cavity, i.e. the
micromaser.!'? The “usual” treatment of the problem, in the notation of Fig. 1,
assigna a time-of-flight r = £/v to the atorm-field interaction. In such a case, the
Rabi oscillation between upper level and lower level, beginning with n photons in
the cavity and an excited atom, i.e. beginning with |¢)(0)) = |a,n), is Aescribed by

Y(r) = cosgry/n + 1la,n) — isingryn + 1|5, n + 1) (1)

where we have assumed resonance beiween the atom and field, and ¢ is the atom-
field coupling constant.

Now there are several questions coucerning Eq. (1), for example: What kind
of center of mass wave function do we choose to yield the best approximation to
Eq. (1)7 Perhape a “sharp” packet like §(x — ut) no that the entrance and exit times
are wel] defined, or perhaps a momentum state exp ipr so that the velocity is well
defined, or perhaps some kind of Gaussian, minimum uncertainty, wave packet.

In order to address these, and other related points, we® were motivated to
reconsider the simple problem of a plane wave center of mass wave function incident
from the left as in Fig. 1

W.. (t) = expipz|a,n), 2
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e (X) micromaser cavity
—e— a a
—————————————————— )
— b —e— b
center of mass wave function
———p
F4
Fig. 1. Excited atom passes through cavity emerging in ground state.
interacting with a resonant cavity for which the Hamiltonian is
Pﬂ
H= Im + g(z){ac" + aat], (3)

where P is the ¢.m. momentum operator for atoms of mass m, g(z) is the atom-field
coupling constant which inside the cavity has a value g and vanishes outside, a,a'
are the annihilation and creation operators and 0,4} are the atomic lowering and
raising operators.
Now the operator
4 = ad* +aa', (4)
has eigenstates
[ramd = Zallom) + b+ 1), (5)
such that
Mz .m) = ftV"'f‘ll'Yt.n)' (6)
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Therefore the Hamilton acting on states

exp ‘P:!: zl":t.n)’

yields the following energies:

PT
— z <0,
2m
Pla
—= +gvyr+1 0O<z<,
2m
Pﬂ
— z> ¢
2m
and, therefore, by conservation of energy
J S
L= g gvn+ 1.
2m 2m

which implies ;
1/3
Pt.nz[qu:gVn'*'l/zm} )

and since the interaction energy is small compared to P? /2m
P, 2 P¥gvn+1/(P/m).

Thus, for an excited state atom at x = 0, we have

1
W(0) = fa,m) = —=(v4m) + 1= )]s
(0) = la,m) = 2l ) + 7o)

and at z = £ this becomes

¥(e) = % [ 7ty n) + €5ty )]

e VRTT R fm) VAT Te/(PIm)
— cl’n n+ e, m I,.1+ n) +C—-|g n m |,’,“ ">] ,

hence, if we rewrite thia back in terms of |a,n), |b,n + 1) states =... have

) 14
W(t) = c_‘vl[COngﬂ + l‘(*‘u—/%la,ﬂ)
— ¢
—~ssingvn+ 1 ——|bn+ 1)]
(Pjm)

This simple result has several interesting features, to wit:

(13)

(14)
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1) The “correct” or “beat™ c.m. wave packet, in the sense of the question asked
earlier, is a plane wave,

2) The atom should be thought of as being “spread” over the whole wave packet
but is “somewhere” we just don’t knov: where. That is, the c.m. wave packet may
be many centimeters in extent but the atom is only a few angstroms in size. This
result speaks to the proper interpretation of the wave packet in quantum mechanics.
The relevance to the present problem is that we don’t know when the atom enters
the cavity, but when it does it acts like a point particle passing through in a “time”
L (P/m).

3) Time here can be argued as being a derived quantity. We never introduce the
concept of velocity. v, and therefore the increment dt, but only the boost operator
involving canonical momenturn p. That is, we may think of our particle falling
through a potential difference or being given an impulse 80 as to create the c.m.
state ¢'P*. Then the result (14) is obtained, which is to be compared with Eq. (1).
The latter is, or course, derived from the time dependent Schrodinger equation.

4) The process of “photon emission” in the cavity aa described by Eq. (14)
involvea well defined phase shifts (like exp(igyv/n + 1£/(P/m)) which are just suffi-
cient to ensure Rabi transitions. Note further that the vacuum Rabi angle g7 can
be, and routinely is, #/2 in the experiments of Ref. 1.

5) This provides a natural basis for a which-path®* detector.

6) The basis for enforcing complementarity, in the work of Refs. 3 and 4, is
qualitatively different from the “randomization of phase” arguments made by Bohr
in the classic Bohr-Einstein debate and by Furry and Ramsey in their discussion of
the Aharonov Bohm effect,
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I'm afraid that I'm one of the people whose primary goal is
expressed by the Danish poet, Piet Hein, in his boc'c of poems that he
calls "Grooks":

"I'd like to know

What this show

is all about

Before it's out."
And always in mind is that big question, "How come such a strange
thirn as existence?" And "How come the quantum?" And, in
connection with the quantum, "How do we get the impression that
there is one world out of the records of many observer-
participators.?" If these questions verge on philosophy, then perhaps
we can adopt as motto, "Philosophy is too important to be left to the

philosophers." Among the philosophers, we have today two great
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schools--the Anglo-American and the Continental school. Heidegger,
representative of the Conlinental school, in one of his books takes
as central theme a passage from the German poet, Stefan George,
"Without the word, no thing may be."

We have something a little like that in quantum theory. We
know the photon does -'ot exist in the atom before the act of
emission and we knovs the photon does not exist in the detector
after the act of detection. And we know that the passage of the
photon from the atom to the detector is simply talk. So there is the
great question: what is the role of the observer-participator in
bringing about that which appears to be happening? Eugene Wigner at
one time thought that consciousness was the key point, but | think
that there were enough objections to that proposition from Lim and
from others that he's given it up. We focus nowadays not on
consciousness but on the act of detection or, better, what Niels Bohr
desctibes as "an elementary quantum phenomenon. . .brought to a
close by an irreversible act of amplification." The key point to my

mind is expressed in the theme of "It from Bit.~ That is:

Every "It", every particle, every field of force -- aven the
spacetime continuum itself -- derives its way of action, its
very existence entirely, even if in some context indirectly,
from the detector-elicited answers to yes or no questions,
hinary choices, bits.

in anather way of wording the idea which | put up for examination,
all things physical, all its, must in the end submit to an

information-thenretic description.
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The original Aharanov-Bohm experiment! (Fig. 1) illustrates

D)E \\\\\\\\\\\W

Figure 1. Idealized version of Aharonov-Bohm experiment. Point

this theme.

source of monoenergetic electrons. Electron waves amerge through
the two slits in the diaphragm. They respond to the magnetic
potential associated with the flux of magnetic lines of force that
run throug;h ine circular region embraced between but not touched
by the two electron partial waves. The interference pattern at the
right undergoes a shift which, expressed in count of fringes,

measures directly the magnetic flux in appropriate Planck units.

Text continues:

Electrons emerge from the localized source at the left. Some

pt netrate the double slit arrangement that divides the diagram. At
the right, a flux of magnetic lines of force runs perpendicular to the
nlane of the figure. They are embraced by the two branches of the
electron beam but do not touch either one. Yet, as we kno./ from
quantum mechanics, tha equations recognize that ihe momentum is
the sum of the kinetic mornentum (proportionai to elactron wave

number} and a potential momentum. The potential momentum is

[
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connected with the magnstic vector potential. The vector potential
integrated around this citcuit gives the amount of magnetic flux
embraced by the circuit. What's more, the difference in wave
number between below and above results in a shift of the

interference fringes:

(Phase change around perimeter of the included area)
= 2n X (number of fringes shift of interference pattern)

= (electron charge) x (magnetic flux embraced) /hc.

We end up with the "bit" tally of fringe shift giving us directly the
desired "it," the magnetic flux,

Another example of "it from bit" shows itself in quite another
domain, the field of black-hole physics. Roger Penrose taught us
about this marvelous preocess of interaction between an incoming
object and a black-hole in which the two trade energy and angular
momentum.2 Demitrios Christodoulou, 19-year old graduate student
who had never finished high school, got to work on analyzing these
Penrose exchange processes. Yes, with their help, one can raise or
lower the energy of a black hole and its angular momentum. But a
certain combination of these two quantities, he found, can be raised,

but never reduced.3 (Figure. 2).
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~———{Mass of black hole)* ~3m

~ .(Angular momentum of black hole)’ — 3

Figura 2. TRANSFORMATIONS:

Reversible —-—» ; lrreversible ---»

in a reversible transformation, the black hole stays or the
Christodoulou line. An irreversible transformation takes the black

hole off the line.

Text:
This combination is like entropy. Another graduate student, Jacob
Bekenstain, came along and pointed out that this quantity not only is
analogous to entropy, it must be entropy.4

! can recall confessing to Bekenstain how bad my conscience
has always been in putting a hot teacup next to a ccid onse. Although
anergy is conserved in the exchange of heat between the two, that
process increases the entropy of the world in an irreversibie way
that echoes unforgivingly down the corridors of time, forever. “But"
| said to Jacob, "if a black-hole comes by, why can't | drop both
teacups in and hide the evidence of my crime?" Bekenstein, however,

is a man of great integrity. This proposed escape did not appeal to
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him. He came back a few months later with the conclusion that the
black hole itself has entropy. How much entropy allows itself to be
deduced out of the results of Christodoulou.

Well, we've all heard the lovely story about Brandon Carter
bringing Bekenstein's paper to the attention of Stephen Hawking and
the two of them deciding it was so preposterous they would write a
paper to prove it was wrong. Then, in the course of the work,
Stephen Hawking> finally found the formula for the emission of
radiation by a black hole, and concluded the blac: hole does have
temperature and the black hole does have entropy.

Then, going further in this domain, Kip Thorne and Wojcisch
Zurek analyzed a typical process in which particles and radiation
fall into a black hole, and showed that the amount of information
lost corresponds exactly to the increase in area measured in
Bekenstein-Planck units.® So | sketchad out a picture of the kind |

wanted for a recent Scientific American Library book (Figure 3).
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Figure 3. A totally symbolic representation of the Bekenstein-
Hawking "Bit number" of a black hole. This number

counts the number of boxes of Bekenstein size that can

be pasted down (in imagination only!) on the horizon of

the black hole. Each box contains cne bit, one yes-or-no

binary digit of information, about what went in to make

that black hole.

Text:
It delighted me so tc hear how the two draftsmen created the
picture. One of them drew the sphers and made these little boxes.
The other threw coins, and, depending whether a head or a tail came
up, put down a zero or a one.The enormous binary number one gets
this way, with an enormous number of digits, does not describe the
information but it measures how many bits of information.

it helps to think of the relevant information about what fell in
as inscribed in a gigantic telephone book. Each paye of the telephone
book describes the ensrgies of the photons and electrons and other
entities that disappeared into the black hole in the act depicted. The
pages in this telephone book we number in binary digits. The bit
number of a black hole is only the number of the page in the
telephone book, it's not a description of the information. The
information needed is enormously more than this. So the black hole
provides another example cf the theme "it from bit.”

Quantum theu.y and general relativity come together in many
ways. The task that has long been on the books is so-called

quantization of general relativity. But that phraseology of the task
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is misleading because it suggests that we ought to quantize
spacetime. After all, isn't spacetime the overarching theme of
general relativity? Actually, if there was anything that misled us
all and prolonged the task more than anything else, it was reading
and thinking that spacetime is the dynamic object. The dynamic
sbject, however, is not spacetime. It is three-dimensional space
geometry, and spacetime is the history of that geometry, or at least
it's the classical history of space aevolving in time. | like to

consider a picture like Figure 4.

Figure 4.* Space, spacatime, and superspace Uppur left: Five samph-
configurations. A B, C, D. £, attained by spare i1 the course of its
expansion and recontraction. Below: Superspac-: and th:se five
.ample configurations, each reprasentaed by 1 pcint In supeispace
Uppur right: Spac:time. A spacelike cut, like A th ugh spacetime

« vAs a momentary configuration ol space Ther: 15 ii0 ompulsion to
limit attention to a one-parameter faiily ot slices, A, B, C, N, ¢

thi. ugh spacetime. The phrase "many-fingeiud tima” is Jdo¢ 0
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telling one not to so limit one's slices, and B’ is an example of this
freedom in action. The 3-geometries B'and A, B, C, D, E, like all 3-
geometries obtained by all spacelike slices whatsoeve: through the
given classical spacetime, lie on a singie bent leaf of history,
indicated in the diagram, and cutting its thin slice through
superspace. A different spacetime, in other words, a different
solution of Einstein's field equation, maans a diffsrent leaf of
history (not indicated) slicing through superspace. *From Charles W,
Misner, Kip S. Thorne, and John A. Wheeler, Gravitation, W. H.
Freeman & Co., New York, 1973, p. 1183.

Text:

At the upper right is spacetime, like an egg. A slice through that
four-dimensional spacetime gives us 3-dimensional space. Thus A
or B or B', etc. constitute a sequence of spacelike slices through
spacetime. The two hazy curved lines symbolically depict two
masses which interact and bend space in their vicinity but don't
collide, and ultimately fly apart.

Quantum theory of spacetime leads us to think of a probability
amplitude, not of a w(x) as we do in the Schrédinger equation for a
particle with one degree of freedom, but ¥({3)G) as a functiona! of a
3-dimensional geometry: One probability amplitude for this 3-
dimensional geometry, one for another and so on. Classical theory

gives us a deterministic leaf of history, cutting through inhe space of

all three geometries.




Quantum considerations ieach us to speak of superspace.
Superspace is an iniinite dimensional manifold, each point which
represents all the prcperties of a 3-dimersional geometry. 3o the
3-dimensional geometry, A, with all its fumps, bumps and wiggles,
is symbolized by the point A in superspace and 3-geometry B is
symbolized by another point. A different view of the same history, a
different slice through spacetime, a slice that runs in another
direction, let me call it B', is symbolized by another point in

superspace. One is as good as another. No canonical choice.

But, thers's one thing wrong with this classical pictura: it
gives us a deterministic leaf of history, sharply defined. Classically
a certain 3-dimensional geometry is briefly realized or it isn't.
Quantum mechanically, howeve:, we know there is no such sharp yes
or no distinction between 3-geomstries. Instead, there's a 3-
geometry-dependent classical probability amplitude that fall. off
sharply from this leaf of history that cuts through superspace. So
the task of general relativity -- and it took a long time to recognize
even what the task was in these terms -- was to find an equation
for ¥ ((3)G) and the equation can be written down? and made to look

simple:

in abbreviated form, cor properly spelled out:8

1,
Gy sy VR JyloG ] 0
&vij v




291

where:
Gijat = ;—Y' YAl YaYik- YY)

But to solve it directly has proved so far to be beyand our power.

Fortunately, Ashtekar®, Smolin, Jacobson and Roveliil® and
colleagues in a group of papers, more than 190 of them so far,11
have given us a totally different way of dealing with the quantum
theory which is closer to the "it from bit" point of view. One sees
what it deals with most easily by going back to electromagnetism.
There the simplest quantity to start with is the vector potential
whose curl gives the magnetic field but whose intagral around a
circuit gives us, as in the Aharonov-Bohm experiment, the flux of
magnetic field through the area embraced by that circuit. So one
operation on the vector potential is differentiation and the other is
integration around a closed circuit.9.12

Ashtekar, Smolin, Jacobson and Rovelli deal with a similar
contrast between the usual differantiation of the connection in
geometry that gives the curvature tenscrs on the one hand and
integration atounc a circuit that gives a loop variable on the other
hand and they come out with the conclur ion that the probability
amplitude in typical cases can be taken to depend only on the knot
class of the loop.

It's enchanting to have a knot'3 come into the story because as
we know, we can have knots in three dimensions, but not in four and

not in two. So, it makes us a little more comfortable that we're

right on the number of dimensions that we see arpund us.
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So much for the formalism. But where does the concept of "it
from bit" appear more directly in the work of Ashtekar, Rovelii and
Smolin? It must be possible to express spacetime curvature by
something that is analogous to the way we can get magnetic flux by
a bit-like or fringe-count-measured integral around a circuit. And
we can, so Jeeva Anandan teaches us.’2 Do an experiment where an
uncharged particle -- preferably one with spin -- does far a loop in
curved spacetime what the electron does in the Aharonov-Bohm
experiment in a region where there is a magnetic field Count the
shift of fringes and divide by the area encompassed between the two
branches of the particle beam. In that way get the relevant
component of the curvature tensor.14 Repeat for three independent
orientations. In this way we get the three components that define
the relevant part of the Einstein curvature tensor.

Translate questions about physics into the counting of fringe
shifts as a way to gain new insight, yes; that is the theme of "it
from bit" ir action. it leaves many old and unanswered questions
still unanswered, but at least offers something closer to a
formalism by which we someday niight answer them: Does time
necessarily end? Is the system necessarily closed in space, too? On
the small scale, we know there must exist quantum fluctuations in
the geumetry. Are those fluctuations strong enough to give space
everywhere, as | have argued,” a foam-like structure?

In a recent paper, Ashtekar, Rovelli and Smolin have made a
further advance. They ask and answer a question. Thay sk, "What
surts of questions should we ask in order to get something that has

a "bit"-like answer. They say if we have a loop that goes through
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space, and that loop cuts through a surface, then in the calculation,
we get the contribution of a Planck area, an area that is the square,
1 G/c3, of the Planck length of 1899.

When | heard about Planck's 94 year-cld paper, | was so
fascinated by it, | looked it up. How come he could derive such a
length so early before he or anyone had even the beginnings of
quantum theory? The answer turned out to be motivation. He had set
out early in life animated by the idea that so simple a feature of
nature as black body rauiation was surely a guide to something
fundamental. He recognized then in the law of displacement of color
of peak radiation with temper ture something independent of all
details of the structure of atoms and solids. Out of the constant in
the displacement law he got a quantity which is essentially what
subsequently came to be called later the Planck constant. Qut of the
Planck constant and the speed of light and the gravitational
constant, he went on to show, one could form a complete set of
units: space, time, mass, temperature and energy. And he urges that
these quantities should serve for natural units in communications
between people who live on different planets to break away from our
own parochial Earth-based units. After all, we who live on this
planet use a unit of time based on the turning of our own particular
planet; a unit of mass based on the particular fluid we drink; and a
unit of length based on the distance from Earth's equator to Earth's
pole. In contrast, the Planck units are universal. | found it easy and
attractive in 1954 to take Plarick's paper and translate his general
ideas into modern terminclogy and to give his units a name, the

"Planck units,” which he, of course, did not”. Ashtekar, Rovelli and
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Smolin in an April 1993 preprint show that a loop drawn through
space contributes to a certain integral one-Planck unit of area for
any surface it intersects. Thanks to their work we have not only a
working formalism but we have some new and interesting questions.
At the end of all mathematics, we come back to the question:

How come there is any such thing as the quantum? And how much
attention should we pay to someone like Heidegger who prior to the
days of the quantum was so taken with the slogan of Stephan George,
"Without the word, no thing may be."

| like to cite the game of Twenty Questions in its surprise
version as suggestive. You come in the door and you start asking
your questions. You know you only have twenty. Is it animal? "No."
ls it vegetable? "No." Mineral? "Yes." Is it green? "No." Is it white?
"Yes." You notice that the more questions you ask, the harder it is for
your friends to answer them. They have to think and think and think.
And finally, as the twenty questic;ns are running out, you have to
make up your mind to a definite word: Is it "cloud?" Your friend
thinks and thinks and thinks anu finally he says, "Yes." And
everybody bursts out laughing and they explain that when you went
out of the room they had agreed not to agree on a word. There was no
word in the room when you came in. Everyone asked could answer
your question as he wished, but with one small proviso. If you
challenged and he couldn't provide a word compatible with his own
answer and with all previous answers, he lost and you won. So it
was just as ditficuit for everyons as it was for me. This game of
Twenty Questions has a little of the flavor of the quantum theory of

the electron in the atom. The slectron, we sometimes think, has a
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position and a momentum in the atom, but no; not untii we've made a
measurement. We have to make up our mind what we're going to ask,
but we can't ask both questions at once. Thus, the inserticn of
equipment to determine the one quantity automatically prevents us
from installing and using such apparatus as would determine the
other quantity.

So here we are at the end, and I'm still as puzzled as | was
when | began with the gquestions, "How come existence? How come
the quantum? " | don't know any more central question in all of

physics than "How come the quantum?”
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ABSTRACT

After some general comments about simtistics and the TCP theorem, I discuss
experimenial searches for violations of the exclusion principle and theories which
allow for such violations.

1. Introduction

It is a great pleasure o speak at this symposium honoring Yakir Aharonov.
Because of the broad range of Yakir’s interests, I have been able to see people who
work in different areas than mine whom I don’t usually see at conferences and to
meet for the first time people whose names and work I know, but whom I had never
had the opportunity to meet. Yakir is especially concerned with fundainental issues
which have lasting interest, such as particle statistics. In the first part of my talk I
will say some things about statistics and related issues which may not be generally
known, and in the second part I will focus on how well we know that particles obey
the statistics we think they obey and on theories which allow violations of statistics.

By way of introduction, I mention two relations involving spin which are
on quite different footings. The relation hetween spin and isospin, that integer-
~pin particles have integer isospin and odd-half-integer-spin particles have odd-half-
-.ieger isospiu, was suggested on the basis of few examples: the proton and neutron,
which are in the odd-half-integer category and the three pions, which are in the
integer category. Further, there was nc fundamental basis for such a relation. When
strange particles were discovered, this relation was found to be violated by the kaons,
which have zero spin and isospin one-half, and by the lambda and sigma hyperons,
which have spin one-half and integer isospin. Since there was no theory supporting
this relation, it was easy to discard it. By contrast, the relation between spin
and statistics first stated by Pauli® iu 1936, that integer-spin particles obey Bose
statistics and odd-half-integer-spin particles obey Fermi statistics was supported
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301




302

by many examples and, at least for free fields, was proved by Pauli from the basic
requirement of local commutativity of observables. This relation has survived and
is one of the most general results of quantum field theory.

2. General Comments about Statistics and Related Issues

2.1 Additivity of the Energy of Widely Separated Subsystems

The zeroth condition I discuss is the requirement that the energy of widely
separated subsystems be additive. This requires that all terms in the Hamiltonian
be “effective Bose operators” in that sense that

[H(x). 6(r))- ~ 0,}x - y| = o. (1)

For example, H can’t have a term such as ¢(z)y(z), where ¢ is Bose and y is Fermi,
because then the contributions to the energy of widely separated subsystems would
alternate in sigi. Such terms are also prohibited by rotational symmetry.

2.2 Statistics of Bound States is Determined by Statistics of Constituents

The well-known rule that a bound state of any number of Bosons and an
even number of Fermions ia a Boson, while a bound state with an odd number of
Fermions is a Fermion, was first stated by Wigner,? who published in Hungarian and
suffered the consequence of using a relatively inaccessible language. Later Ehrenfest
and Oppenheimer? independently published this result in English.

2.3 Spin-Statistics Theorem

[ distinguish between two theorems. The physical spin-statistics theorem is
the theorem of Pauli mentioned above, local commutativity of observables requires
that, given the choice between Bose and Fermi statistics, integer-spin particles must
obey Bose statistics and odd-half-integer-spin particles must obey Fermi statistics.
The phrase, given the choice between, is necessary, because the analogous connec-
tion holds between parabose or parafermi statistics and spin, The theorem which
I prefer to call the spin-type-of-locality theorem, due to Burgoyne,' states that
fields which commmute at spacelike separation must have integer spin and fields that
anticommute at spacelike separation must have odd-half-integer spin. Both the
assumptions and the conclusions of the two theorems differ. The Pauli theorein ex-
plicitly assumes a choice between different types of particle statistics and concludes
that if the wrong choice is made, tlien observables fail to commute at spacelike sep-
aration. For example, if one chooses Bone statistics for spin-one-half particles, i.e.,
uses Bose commutation relations for the annihilation and creation operators of the
spin-one-half particles, then the commutator of the observables for the free theory
will contain the s(!)(z - y) singular function, which does not vanish for spacelike
z - y, rather than the S(z - y) singular function which does, The theory (at lenst
for the free case) still exists. The Burgoyne theorem makes no statement about
particle statistics; rather it assumes a choice beiween field commutiation mles, If
the wrong choice is made, then the fields are identically zero, 2o the theory does not
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even ex .t. This latter theorem has a very general proof in the context of axiomatic
field theory; however it says nothing about particle statistics.

2.4 Weakness of the TCP Theorem

In contrast to the spin-statistics theorem, which requires locality of observ-
ables, the TCP tlieorem holds regardless of locality, and is a much weaker theorem.
Indeed, it is difficult to make a theory which violates TCP. This is clearly illustrated
by Jost’s example.® Jost shows that a free neutral scalar ficld whose annihilation
and creation operators are quantized with anticommutation relations (and whose
particles thus obey Fermi statistics) still obsys the normal TCP theorem. Cluster
decomposition properties also hold regardless of the choice of commutation rela-
tions.

3. Search for Small Violations of Fermi and Bose Statisti-s

Now I come to the second part of my taik and discuss how to detect viola-
tions of Fermi or Bose statistics if they occur. Avomic spectroscopy is the first place
to search for violations of the exclusion principle since that is where Pauli disccv-
ered it. Cne locks for funny lines which do not correspond to lines in the normal
theory of atomic spectra. There are such lines, for example in the solar spectrum;
however \hey probably can be accounted for in terms of highly ionized atoms in an
environment of high pressure, high density and large magnetic fields. Laboratory
spectra are weil accounted for by theory and an bound the violation of the exclu-
sion principle for electrons by something like 1 ® to 10-%. A wuseful quantitative
measure of the viclation, V, is that V is the coeflicient of the anomalous commponent
of the two-particle density matrix; for fermions, the two-electron density matrix, ps,
is

P13 =(1-V]pa +Vp,, (2)

where pq,) is the antisymunetric (symmetric) two-fermion density matrix. Thoma
and Nolte,® in a contribution to a poster session here, discuss bounds on the violation
of the exclusion principle for nucleons based on the absence of the nucleus *Li.
Bounds ¢1so follow from the absence of *He. Mohapatra and I surveyed a variety of
searches for violations of narticle statistics in 7.

1 will discuss an insightful experiment by Maurice and Trudy Goldhaber®
which was designed to answer the question, “Are the electrons emitted n nuclear
B-decay quantum mechanically identical to the electrons in atoms?” We know that
the -decay electrons have the same spin, charge and mass as electrons in atoms;
however the Goldhabers realized that if the g-decay electrons were not quanium
mechanically identical to those in atoms, then the g-decay electrons would not see
the K shell of a heavy atom as filled and would fall into the K shell and emit an x-ray.
The Goldhabers looked for such x-rays by letting 3-decay elecirons from a natural
source fall on & block of lead. No such x-rays were found. The Goldhabers were able
to confirm that electrons from the two sources are indeed quantum mechanically
identical. At the same time, they found that any violation of the exclusion principle

———— -
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for electrons must be less than 5%.

Ramberg and Snow® developed this experiment into one which yields a high-
precision bound on violations of the exclusion principle. Their idea was to replace
the natural 8 source, which provides relatively few electrons, by an electric cur-
rent, in which case Avogadro’s number is on our side. The possible violation of
the exclusion principle is that a given collection of electrons can, with different
probabilities, be in different permutation symmetry states. The prubability to be
in the “normal” totally antisymmetric state would presumably be close to one, the
next largest probability would occur for {he state with its Young tableau having
one row with two boxes, etc. The idea of the experiment is that each collection
of electrons has a possibility of being in an “abnormal” permutation state. If the
density matrix for a conduction electron together with the electrons in an atom has
a projection onto such an “abnormal” state, then the conduction electron will not
see the K shell of that atom as filled. Then a transition into the K shell with x-ray
emission i allowed, Each conduction electron which comes sufficiently ciose to a
given atom has an independeut chance to make such an x-ray-emitting transition,
and thus the probability of seeing such an x-ray is proportional to the number of
conduction electrons which traverse the sample and the number of atoms which the
electrons visit, as well as the probability that a collection of electrons can be in
the anomalous state. Ramberg and Snow chose to run 30 amperes through a thin
copper strip for about a month. They estimated the energy of the x-rays which
would be emitted due to the transition to the K shell. No excess of x-rays above
background was found in this energy region. Ramberg and Snow set the limit

Y<1.Tx107%, 3

This is high precision, indeed!

4. Theories of Violation of Statistics

4.1 Gentile’s Intermediate Statistics

The first attempt to go beyond Bose and Fermi statistics seems to have bcen
made by G. Gentile!® who suggested an “intermediate statislics” in which at most
n identical particles could occupy a given quantum state. In intermediate statistics,
Fermi statistics is recovered for n = 1 and Bose statistics is recovered for n — oo} thus
intermediate statistics interpolates between Fermi and Bose statistics. However,
Gentile’s statistics is not a proper quantum statistics, because the condition of
having at most n particles in a given quantum state is not invariant under change
of basis. For example, for intermediate statistics with n = 2, the state |¢) - |k k&)
does not exist; however, the state |x) = T, ;.1 Uss,Uss,Usally, b, 1s), obtain .1 from
[#} by the unitary change of single-particle basis, |k}’ = T2, Us,ll) does exist.

By contrast, parafermi statistics of order n is invariant under change of
basis,!* Parafermi staetistics of order n not only allows at most n identical parti-
cles in the same state, but «lso allows at most n identical particles in a symmetric
state. In the example just described, neither |¢) nor |x) exist for parafermi statistics
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of orde: two.

{.2 Green’s Parastatistics

H.S. Green'® proposed the first proper quantum statistical generalization
of Bose and Fermi statistics. Green noticed that the commutator of the number
opera* -v with the annihilation and creation operators is the same for both bosons
and feiinions

(rral). = Sural. (4)

The number operator can be written
ny = (1/2)(a}, ax]s + const, (5)

where the anticommuta: ¢ (commutator) is for the Bose (Fermi) case. If these
expressions are inserted in the number operator-creation operator commutation re-
lation, the resulting relation is trilinear in the annihilation and creation operators.
Polarizing the number operator to get the transition operator ny which annihi-
lates a free particle in state & and creaies one in state I leads to Green’s trilinear
commutation relation for his parabose and parafermi statistics,

((ah ar)e, al)- = 26imal, (6)
Since these rules are trilinear, the usual vacuum condition,
ax|0) =0, (M

does not suffice to allow calculation of matrix elements of the a’s and at’s; a condition
on one-particle states must be added,

ara} 0) = 610). (8)

Green found an infinite set of solutions of his commutation rules, one for
each integer, by giving an ansatz which he expressed in terms of Bose and Fermi
cperatoss. Let

n "
“1 = Zb(‘u)t, ay = Zbia), (9)

=1 =1
and let the b{* and b{®"' be Bose (Fermi) operators for a = g but anticommute
(commute) for a # 8 for the “parabose” (“parafermi”) cases. This ansatz clearly
satisfies Green’s relation. The integer p is the order of the parastatistics. The
physical interpretation of p is that, for parabosons, p is the maximum number of
particles that can occupy an antisymmetric stale, while for parafermions, p is the
maximum number of particles that can occupy a symmetric state (in particular, the
maximum number which can occupy the same state)., The case p = 1 corresponds
to the usual Boge or Fermi statistics. Later, Messiah and I'! proved that Green’s
ansatz gives all Fock-like solutions of Green’s commuiation rules. Local obseivables
have a form analogous to the usual ones; for example, the local current for a spin-1/2
theory is j, = (1/2)[¥(x), ¥(2)]-. From Green’s ansatz, it is clear that the squares of
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all norms of states are positive, since sums of Bose or Fermi operators give positive
norms. Thus parastatistics gives a set of orthodox theories. Parastatistics is one
of the possibilities found by Doplicher, Haag and Roberts'? in a general study of
particle statistics using algebraic field theory methods. A good review of this work
is in Haag’s recent book'*.

This is all well and good; however, the violations of statistics provided by
parastatietics are gross. Parafermi statistics of order 2 has up to 2 particles in each
quantum state. High-precision experiments are not necessary to rule this out for
all particles we think are fermions.

4.3 The Ignatiev-Kuzmin Model and “Parons”

Interest in possible small violations of the exclusion principle was revived by
a paper of Ignatiev and Kuzmin!® in 1987. They constructed a model of one oscilla-
tor with three possible states: a vacuum state, a one-particle state and, with small
probakbility, a two-particle state, They gave trilinear commutation relations for their
oscillator. Mohapatra and I showed that the Ignatiev-Kuzmin oscillator could be
represented by a modified form of the order-two Green ansatz. We suspected that
a ficld theory generalization of this model having an infinite number of osciliators
would not have local observables and set about trying to prove this. To our sur-
prize, we found that we could construct local observables and gave trilinear relations
which guarantee the locality of the current.'® We also checked the positivity of the
norms with states of three or less particles. At this stage, we were carried away with
enthusiasm, named these particles “parons” since their algebra is a deformation of
the parastatistics algebra, and thought we had found a local theory with small vi-
olation of the exclusion principle. We did not know that Govorkov!” had shown in
generality that any deformation of the Green commutation relations necessarily has
states with negative squared norms in the Fock-like representation. For our model,
the first such negative-probability state occurs for four particles in the representa-
tion of 54 with three boxes in the first row and one in the second. We were able to
understand Govorkov’s result qualitatively as follows:!® Since parastatistics of order
pis related by a Klein transformation to a model with exact SO(p) or SU(p) internal
symmetry, a deformation of parastatistics which interpolates between Fermi and
parafermi statistics of order two would be equivalent to interpolating between the
trivial group whose only element is the identity and a theory with $O(p) or SU(p)
interual symmetry. This is imapoztsible, since there is no such interpolating group.

4.4 Apparent Violations of Siatistics Due to Compositeness

Before getting to “quons,” the final type of statistics I will discuss, [ want to
interpolate some comments about apparent violations of statistics due to compos-
iteness. Consider two *He nuclei, each of which is a fermion. If these two nuclei are
brought in close proximity, the exclusion principle will force each of them into ex-
cited states, piausibly with small ampliiudes for the excited states. Let ike creation
operator for the nucleus at location A be

By = /1= 248+ Aabi+ - Al << 1 (10)
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and the creation operator for the nucleus at location B be

By = /1 A%b) + Agbl 4+, Apl << L. (11)

Since these nuclei are fermions, the creation operators obey fermi statistics.

[bi'|b;]+ =4 (12)

Then, L
bubl0) = [‘/1 = AkAs - Aay/1- AR ebbi|0), (13)
(154851002 & (As — Am)” << 1, (14)

s0, with small probability, the two could even occupy the same location, because
each could be exciled into higher states with different amplitudes. This is not an
intrinsic violation of the exclusion principle, but rather only an apparent violation
due to compositeness.

4.5 “Quond”
Now I come to my last topic, “quons.”t® The quon algebra is

ap.a,' —qa,‘u,. = 6x1- (18)

For the Fock like representation which I consider, the vacuum condition
al0) =0 (16)

is imposed.

These two conditions determine all vacuum matrix element of polynomials in
the creation and annihilation operators. In the case of free quons, all non-vanishing
vacuum matrix elements must have the same number of annihilators and creators.
For such a matrix element with all annihilators to the left and creators to the right,
the matrix element is a sum of products of “contractions” of the form (0]aa'|0) just
as in the case of bosons and fermions. The only difference is that the terms are
multiplied by integer powers of 4. The power can be given as a graphical rule: Put
o's for each anmnihilator and x's for each creator in the order in which they occur in
the matrix element on the x-axis. Dzaw lines above the x-axis connecting the pairs
which are contracted. The minimum number of times these lines cross is the power
of q for that term in the matrix element.

The physical significance of ¢ for small violations of Fermi statistics is that
¢ = 2V — 1, where the parameter V appears in Eq.(' ). For small violations of Bose
statistics, the two-particle density matrix is

p2={1—V)ps + Vpq, (17)

where p,(q) i8 the symmetric (antisyminetric) two-boson density matrix. Then ¢ =
1-12v,

For g in the open interval (-1,1) all representations of the symmetric group
occur. As g —+ 1, the symmetric representations are more heavily weighted and at
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¢ = 1 only the totally symmetric representation remains; correspondingly, as ¢ — —1,
the antisymmetric representations are more heavily weighted and at ¢ = —1 only the
totally antisymmetric representation remains. Thus for a general n-quon state, there
are n! linearly independent states for —1 < ¢ < 1, but there is only one state for ¢ = +1.
I emphasize something that many people find very strange: there is no commutation
relation between two creation or between iwo annihilation operators, except for ¢ =
41, which, of course, correspond to Bose and Fermi statistics. Indeed, the fact that
the general n-particle state with different quantum numbers for all the particles has
n! linearly independent states proves that there is no such commutation relation
between any number of creation (or annihilation) operators. An even stronger
statement holds: There is no two-si:'ad ideal containing a term with only creation
operators. Note that here quons dii  rom the “quantum plane” in which

1y = quz (18)
holds.

Quons are an operator realization of “infinite statistics” which were found as
a possible statistics by Doplicher, Haag and Roberts!? in their general classification
of particle statistics. The simplest case, ¢ = 0,%, suggested to me by Hegstrom, was
discussed earlier in the context of operator algebras by Cuntz.® It seems likely that
the Fock-like representations of quons for j¢| < 1 are homotopic to each other and,
in particular, to the ¢ = 0 case, which is particularly simple. Thus it is convenient,
as I will now do, to illustrate qualitative propertics of quons for this simple casc,
All bilincar observables can be constructed from the number operator, ny = nu, or
the transition operator, ny, which obey

[ng,a}]_ = 6,,,(1}, [nu,a!,,]_ = 61,,.(1{ (19)

Although the formulas for n; and uy in the general case?? are complicated, the
corresponding formulas for ¢ = 0 are simple.® Once Eq.(18) holds, the Hamiltonian
and other observables can be constructed in the usual way; for example,

H= zqng, etc, (20)
o .
The obvious thing iy to try
m = alay, (21)
Then
[n,,,a{]_ = a;a;,u} - (.,fa{ab. (22)

The first term in Eq.(22) iu éuaf as desired; however the second term is extra and
must be ~anceled. This can be done by adding the term ¥, alalapas to the term in
Eq.(?"Y This cancels the extra term, but adds & new extra term, which must be

cancelea vy another term. This procedure yields an infinite series for the nuwmber
operator and for the transition operator,

g = a{ﬂl + z: ﬂIaImm + Z a!,a!lu},am;,a,, +... (23)
t

tta
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As in the Bose case, this infinite series for the transition or number operator defines
an unbounded ' perator whose domain includes states made by polynomials in the
creation operators acting on the vacuum. (As far as I know, this is the first case in
which the number operator, Hamiltonian, etc. for a free field are of infinite degree.
Presumably this is due to the f: ¢t that quons are a deformation of an algebra and
are related to quantum groups.) For nonrelativistic theories, the x-space form of
the transition operator is®

pi(9) = W) + [ @ ) Ge)
+/dalldazw(zz)'/)’(zl)tb’(x)'/’()')'.b(ﬁ)'/’(!z)+"', (24)
which obeys the nonrelativistic locality requirement

lpi(x:y), ¥ (W)l = 8(y — w)y¥!(x), and p(x;y)j0) =0. (25)

The apparent nonlocality of this formula associated with the space integrals has no
physical significance. To support this last stat “nent, consider

[Qjﬂ(z)ijV(y)]— =0, z~y, (26)

where @ = [#rj%z). Equation (26) seems to have nonlocality because of the space
ntegral in the Q factors; however, if

UH(I)ljv(y)]-— =0, z~y, (27)

then Eq.(26) holds, despite the apparent nonlocality. What is relevant is the com-
mutation relation, not the representation in terms of a space integral. (The appar-
ent nonlocality of quantum elect;odynamics in the Coulomb gauge is another such
example.)

In a similar way,

le2(x, 75", %), ¥F (2)]- = 8(x" - D' (X)pa(y, ¥') + 6(y" — )¢ (¥)pu (3, ). (28)

Then the Hamiltonian of a nonrelativistic theory with two-body interactions has
the form

H= (2"])'1 /ﬁzV; 'V,lpl(x,xl)|x=x, + -;/da:nf’yV(lx - yl)pz(x,y;y,x). (29)

[F,91(e0) -y )] = ()™ 30+ TV (s~ 2D (54) - 91 (o)

i=t i<j

+30 [ @vx 5Dute) W), (30)
§=1

Since the last term on the right-hand-side of Eq.(30) vanishes when the equation
is applied to the vacuum, this equation shows that the usual Schridinger equation
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holds for the .i-particle system. Thus the usual quantim mechanics is valid, with
the sole exception that any permutation symmetry is allowed for the many-particle
system. This construction justifies calculating the energy levels of (anomalous)
atoms with electrons in states which violate the exclusion principle using the normal
Hamiltonian, but allowing anomalous perrn.utation symmetry for the electrons.*

I have not yet addressed the question of positivity of the squares of norms
which caused grief in the paron model. Several authors have given proofs of
positivity,?*-?® The proof of Zagier provides an explicit formula for the determi-
nant of the n! x n! matrix of scalar products among the states of n particles in
different quantum states. Since this determinant is one for ¢ = 0. the norms will be
positive unless the determinant has zeros on the real axis. Zagier's formula

det M, (q) = n:;ll(l _ qk(h+l))(n—-l)nl/h(h+1)' (31)

has zeros only on the unit circle, so the desired positivity follows. Although quons
satisfy the requirements of nonrelativistic locslity, the quon field does not obey
the relativistic requirement, namely, spacelike commutativity of observables. Since
quons interpolate smoothly between fermions, which must have odd half-integer
spin, vnd bosons, which must have integer spin, the spin-statistics theorem, which
can be proved, at least for free fields, from locality would be violated if locality were
to hold for quon fields. It is amusing that, nonetheless, the free quon field obeys
the TCP theorem and Wick’s theorem holds for quon fields.!®

It is well known that exterunal fermionic sources must be multiplied by a
Grassmann number in order to be a valid term in a Hamiltonian. This is necessary,
because ac ditivity of the energy of widely separated systems requires that all terms
in the Hamiltonian must be effective Bose operators. I constructed the quon analog
of Grassmann numbers® in order to allow external quon sources. Because this issue
was overlooked, the bound on violations of Bose statistics for photons claimed in®
is invalid.
4.6 Speicher’s Ansatz

Speicher®” has given an ansatz for the Fock-like representation of quons anal-
ogous to Green's ansatz for parastatistics. Speicher represents the quon annihilation
operator as

N
ap = limy L N7H3 Y 8, (32)
ax=1

where the b)) are Bose oscillators for each a, but with relative commutation relations
given by
bs‘“)b}m' — a(n.ﬂ)bgl’)lbr)'a # B3, where o208 = 41, (33)

This limit is taken as the limit, N — oo, in the vacuum expectation state of the
Fock space representation of the 5™, In this respect, Speicher’s ansatz differs from
Green’s, which is an operator identity. Further, to get the Fock-like representation

of the quon algebra, Speicher chooses & probabhilistie condition for the signs st>#),

prob(sl*?) = 1) = (1 + g)/2, (34)
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prob(s{*f) = _1) = (1 ~ g)/2. (35)

Rabi Mohapatra and I tried to get a specific ansatz for the si=f) without success.
1 was concerned about that, tut Jonathan Rosenberg, one of my mathematical
colleagues at Maryland, pointed out that some things which are easy to prove on a
probabilistic basis are difficult to prove otherwise. For example, it is easy to prove
that with probability one any number is transcendental, but difficult to prove that
» is transcendental. I close my discussion of Speicher’s ansatz with two comuents.
First, one must assume the probability distribution is uncorrelated, that is

(/NI P = [(1/2)(1 4 g)(1) + (/21— ) (- D] = ¢ (38)
af
(/N33 sleplglonm = g2 (37)
a3,
(1/N®) Z a(P) gB M g(me) — g3 (38)
8,7

ete. Secondly, one might think that, since Eq.(32) iniplies the anulogous relation for
two annihilators or two creators in the Fock-like representation, Speicher’s ansatz
would imply ayer — quag = 0, which we know canunot hold. This problem would
arise if the ansatz were an operator identity, but does not arise for the limit in
the Fock vacuum. Since a sum of Bose operators acting on a Fock vacuum always
gives a positive-definite norm, the positivity property is obvious with Speicher’s
construction.

Speicher’s ansatz leads to the conjecture that there is an infinite-valued hid-
den degree of freedom underlying g-deformations analogous to the hidden degree of
freedom underlying parastatistics.
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ABSTRACT

It is argued that certain recent advances in the
construction of a theory of the collapses of Quantum-Mechanical
wave functions suggest the possibility of an account of the
tendencies of thermudynamic systems to approach their equilibrium

states in which epistemic considerations play no role whatever.
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0) ZIntroduction

It is something of a cliche of theoretical physics, by now,
to entertain the hope <that the explicitly probablistic and
explicitly time-reversal-asymmetric character of the collapses of
quantum-mechanical wave-functions might somehow be related to,
might somehow be explanatory of, the probablistic and time-
reversal asymmetric character of the laws of thermodynamics.

And it is only slightly less of a cliche to point out that
on second thought, on taking stock of precisely what sorts of
probabilities and time-reversal-asymmetries collapses actually
exhibit, the prospects for such an explanation don't look so
good.

And what I want to do in this note is to rehearse the above
considerations in some detail, and then to show how certain

recent advances in our understanding of the collapse-process shed

a radically different light on them.
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1) What the Centrsl Problem at the ?Poundations of
Statistical Mechanics ia

Recall some actual historical circumstance (of wiich you
have witnessed a huge number) in which two macroscopic bodies
whose temperatures initially differed were brought into thermal
contact with one another, and in which those two bodies were not
subsequently disturbed, and in which, ten minuvtes thereafter, the
temperature-difference hetween those two bodies had decreased;
and consider what the correct explanation of that decrease is,

The statjistical-mechanical explanation of that decrease,
both in the classical and in the quantum case, runs (crudely)

like this:

The initial mpacrostate of that two-body system was
compatible with a huge number of its possible microstates; and
the overwhelming majority of those compatible microstates were
ones which the deterministic equations of motions entail would
evolve, over the next ten minutes, towards states in which the
temperature-difference between those two bodies is smaller,

And

There's a principle of reasoning (which has gone under
various names at various times: a principle of indifference, a
principle of symmetry) to the effect that if we have no
information bearing on the question of which one of a certain set
of states obtains, then the probability we assign to any

particular ong of those ctates cobtaining ought to be equal to the

Kf;::__zxiﬁﬁzz;zugg
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probability we assign to any particular other one of thenm
obtaining.

And

As of the moment when those two bodies were brought
together, nobody had any information whatever bearing on the
guestion of which one of the above-mentioned compatible
microstates of that system then cobtained.

And sO

As of the moment when those two bodies were brought
together, everybody ought to have judged it to be overwhelmingly
likely that the microstate of that system was one of those which
the deterministic equations of motion entail would subsequently
evolve towards states in which e temperature-difference between
those two bodies is smaller.

And so

It was very much to be expected, as of the moment when those
two bodies were brought together, that the temperatures of those
two bodies would approach one another over the subsequent ten

ninutes.

And it is arguably the central problem at the traditional
foundations of statistical mechanics that there has always seemed
to be something manifestly unsatisfactory about that explanation.

It's something like this:

Nothing, surely, about what anybody may or may not have

known about those two bodies at the moment when they were brought

together can have played any role in bringing it about (that is:
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in causing it to happen) that the temperatures of those two
bodies subsequently approached one another! And so presumably
nothing about what anybody may or mey not have known about those
two bodies at the moment when they were brought together can play
any role in satisfactorily explaining why their temperatures
subseguently approached one another. And yet (and this is what
the trouble is} the fact that nobody knew, as. of the moment when
they were krought together, precisely which one of the possible
microstates of those two bodies then obtained plays a crucial
role, an indispensable role, in the above so-called "explanation"
of the fact that the their temperatures subsegquently approached
one ancther.

And what I want to do in this note 1is to describe how
(notwithstanding tha sorts of objections which were alluded to in
the introduction, and which will be described more fully in the
next section) certain recent developments ir the guantum~
mechanical theory of measurement suggest the possibility of a new
and much improved foundation for statistical mechanics, in which

no such trouble can arise.

2) What We're in Need of

Let's set up some notation.
Consider (again) the two-body system we taiked about before.

Call the set of those of the possible microstates of that system
313
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which are compatible with its initial macrostate "{C}". And call
those microstates in {C} which the eguations of motion entail
will subsequently evolve towards states in which the temperature-
difference between the two bodies 1is smaller ‘“pnormal"
microstates, And call those microstates in {C} which the
equations of motion entail will subsequently evolve towards
states in which the temperature-differcnce between the two bodies
is bigger "“abnormal" microstates.

And note that ({C} will have a natural metric. In the
classical case that metric will be the euclidian metric on the
phase space, and in the gquantum~mechanical case it will be the
Hilbert-space metric generated by the absolute square of the
inner product.

And note that a serviceable idea of what it amounts to for
twa mnicrostates to be only microscopically different from one
another, an idea of what it amounts to for two microstates to be

within one another's microscopic neighborhoods, vcan be

straightforwardly built out of that metric.

Now, 1t has already been wentioned here (and this is a fact
that was made important use of in the above "explanation") that
normal microstates in {C} vastly outnumber abnormal microstates

in {C}; but it also happens to be the case (and this is a fact

that was not made use of in the above "Yexplanation®) that normal

microstates vastly outnumber abnormal microstates in ever
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individual microscopic neighborhood of {¢}!, and (more

particularly) that normal microstates vastly outnumber abnormal
microstates even within the microscopic neighborhoods of every
one of the abnormal the microstates in {C}.

And what that means is that the property of being a normal
state is extraordinarily stable under small perturbations of
those two bodies, and that the property of being an abnormal

state is extraordinarily unstable under small perturbations of

those two bodies.
And what that wcans is that if the two bodies we've been
talking about here were in fact somehow being frequently and

microscopically and randomly perturbed, then the temperatures of

those two bodies would be overwhelmingly likely to approach one

another no matter which one of the microstates in {C} initially

obtained.

And so if the ?.wo bodies we've been talking about here were,
in fact, somehow being fredquently and microscopically and
randomly perturbecd, then the fact <that their temperatures

approached one another could be explained objectively, it could

be explained (that is) without reference to anything about what

anybody happens to have known.

And what I want to explore in this note is a way of taking

advantage of that.

To begin with, a pair of perennial misunderstandings will
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need to be cleared up.

1} The perturkations in question here are going to have to

be genuinely random, which is to say that they are going to have
to be connected with real physjcal c¢hances in the fundamental
lavs of nature.

That seems to have had a way of uncannily escaping people':s
attention. I+ has cften been suggested in the literature, for
example, that (since none of the macroscopic two-body systems of
which we have ever had any experience, and none of the

macroscopic two-body systems of which we ever shall have any

experience, are genuinely jsolated ones) those perturbations can
be seen as arising simply from the interactions of the two-body
system we've been t-lking about here with its environment.? But
s0 long a3 whatever constitutes the environment of those two
bodirs is subject *¢ the came sorts of deterministic laws as the
jansci’ sernits of those bodies themselves are, that sort of thing
wi - t+oAnt?, det us nowhere: whatever perturbations arise from
i+ erat.ors with an environment like that will be "random" (if
o E 4 the word for it) only in the explanatorily irrelevant
-2 that nobody happens to be aware of precisely what they are.

2) Not just any real physical chances in the fundamental
laws of nature will necessarily do the trick.
That's been missed too. That's what's been going on, for

example, throughout the long tradition of attempts to connect the

probabilities of statistical mechanics with the real phyrical
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chances in the fundamental laws of Quantum Mechanics.3 What the

trouble with all those attempts has always been (and this is the
trouble that wa: alluded to in the introduction) is that on the
standard way of thinking about Quantum Mechanics (that is: on the
Copenhagen way of thinking about it, or on von Neumann's way of
thinking about it) those chances oply appear in connection with
the act of measurement, and the tendency of a two-body system
like the one we've been talking about to approach its equilibrium
state presumably doesn't depend on arybody's having measured that
system, or on anybody's being in the process of measuring that
system, or on anybody's being about to measure that system, and
so standard sorts of Quantum-Mechanical chances ({(even though
they're yeal physical chances, and not merely epistemic ones) are
presumably not the sorts of chances that can play any role

whatever in explaining that tendency.

But it <turns out that there are extremely good reasons
(reasons which have been in the literature for an extremely long
time, and which have nothing at all to do with the foundations of
statistical mechanics) for believing that the standard way of
thinking about quantum mechanics cap't be righi; and it turns out
that a promising ngn-standard way of thinking about quantum

mechanics exists in which chances come up somewhat differently.

That's what the next section will be about.
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3) What We Have

Let me begin by very briefly rehearsing the gquantum-
mechanical measurement problem.

It comes up like this: Suppose that every physical system in
the world invariably evolves 1in accordance with the linear
deterministic quantum-mechanical equations of motion; and suppose
that M is a good measuring instrumert for a certain observable A
of a certain physical system S. What it mecans for M to be a
'‘good' measuring instrument for A is just that for all

eigenvalues aj of A:

[ready>y[A=aj>g —=~=-~ > [indicates that A=ai>y{A=aji>g (1)

where [ready>y is that state of the measuring instrument M in
which M is prepared to carry out a measurement of A, '---->'
denotes the evolution of the state of M+S during the measurement-
interaction between those two systems, and [indicates that A=aj>y
is that state of the measuring instrument in which ,say, its
pointer is pointing to the aj- position on its dial. That is:
what it means for M to be a 'good' measuring instrument for A is
just that M invariably indicates the correct value for A in all
those states of S in which A has any definite value.

The problem is that (1), together with the linearity of the

eguations of motion entails that:
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[ready>y 2 [A=aj>g =-—> 2 [indicates that A=ai>y([A=aj>g (2)
{ i
And that appears not to be what actually happens in the world.
The right-hand-side of (2) 1s a superposition of various
different outcomes of the A-measurement (and not any particular
one of them), but what actually happens when we mea:ure A on a
system 8 in a state like the one on the left-hand-side of (2) is
that one or another of those particular outcomes dogs emerge)
*

And so there's been a tradition of thinking that there must,
in fact, be physical processes which do not proceed in accordance
with the linear equations of motion: there has been a tradition
of thinking that there must be such things in the world as non-
linear, chance-governed, collapses of the wave-function.

And those collapses must somehow be connected with the act
of measurement. But how connected, exactly?

The standard way of thinking about guantum wechanics

connects them by fiat. It amounts to a fundamental sica ,

on the standard way of thinking, that mecAasurements cause

collapses.4
But it's been understood for a long time that (since the
meaning of a word like "mecasurement" is simply not precise enough

to appear in any fundamental physical law, and since there isn't

any plausible means of making it that precise) the standard way

of thinking about that stufi can't pussibly be the right way of

thinking about it.
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And so it's been understood for a long time tnat (if the
argument just under egquation 2 is accepted) there is going to
have to be some sort of u bona fide physical theory of the
collapse of the wave-function; of which the connection between
collapses and measurements will be an approximate consequence, as

opposed to a fundamental postulate.

*

Ghirardi, Rimini, and Weber have recently propused a theory
(the first theory) 1like that. Their idea (which is formulated
for nonrelativistic guantum mechanics) goes like this: The wave

function of an N particle system

\V(rl....rN, t) (3)

usually evolves in accordanc2 with the Schrodinger equation; but
every now and then (once in something like 103*5/N seconds), at
random, but with fixed probability per unit time, the wave
function is suddenly multiplied by a normalized Gaussian (and thn
product of those two separatcly normalized functions is
multiplied, at that same instant, by an overall renormalizing

constant). The form of the multiplying Gaussian is:
—(r- 2 2
K exp[-(r-ry)4/2)%) (4)

where ry is chosen at random from the arguments r,, and the width

of the Gaussian, 8, is of the order of 10~° c¢m.. The probability
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of this Gaussian being centered at any particular point r is
stipulated to be proportional to the absolute square of the inner
product of (3) (evaluated at the instant Jjust prior to this
'junp') with (4). Then, until the next such 'jump', everything
proceeds as before, in accordance with the Schrodinger equation.
The probability of such jumps per particle per second (which is
taken to be something like 10715, as I mentioned above), and the
width of the multiplying Gaussians (which 1= taken to be
something like 10°% om.) are new constants of nature.

That's the whole theory. No attempt is made to explain the
occurrence of these 'jumps'; that such jumps occur, and occur in
precisely the way stipulated above, can be thought of as a new
fundamental law; a beautifully straightforward and absolutely

explicit law of collapse, wherein there is no talk at a

fundamental 1level of 'measurements’ or 'recordings' or
‘macroscopicness! or anything like that.

Note that for isolated microscopic systems (i.e. systems
consisting of small nunbers ot particles) 'jumps'! will be so rare
as to be completely unobservable in practice; and has been
chosen large enough so that the violations of conservation of
energy which those jumps will necessarily produce will be very
very small (over reasonable time-intervals), even for macroscopic
gystems.

Moreover, if it's the case that every measuring instrument
worthy of the name has got to include some kind of a pointer,
which indicates the outcome of the measurement, and if that

pointer has got to be a macroscopic physical object, and if that
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pointer has got to assume macroscopically difterent spatial
positions in order to indicate different such outcomes (and all
of this seems plausible enough, at least at first)e, then the GRW
theory can apparently guarantee that all measurcments have
outcomes .

Here's how: Suppose that the GRW theory is trues. Then, for
measuring instruments (M) such as were Jjust described,

superpositions like

[A>[M indicates that 'A'> + [B>[M indicates that B> (%)

(which will invariably be superpositions of macroscopically
different localized states of some macroscopic physical object)
are just the sorts of superpositions that don't last long. 1In a
very short time, in only as long as it takes ftor the pointer's
wave-function to yet mnmultiplied by one ol the GRW Gaussians
fwhich will be something of the order of 1015/N seconds, where N
is the number of elementary particles in the pointer) one of the
terms in (5) will disappear, and only the other will propagate.
Morcover, the probability that one term rather than another
survives 1s (just as standard Quantum Mechanics dictates)
proportional to the fraction of the norm which it carriegs.
*

The reader will already have guessed what all this has to do
with the considerations ot sections 1 and 2.

Let's make it explicit:

The suggestion is that every sindle one of the microstates
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in {€} (and not merely a large majority of them) will be
overwhelmingly likely, on any theory of the collapse of the wave
function 1like the one Jjust described, to evolve, over the
subsequent ten minutes, into states in which the tenperature-
difference between the two bodies is gpaller.

The suggestion (that is) is that the 'jumps' in the theory
just described are preciselvy the sorts of ‘'perturbations' we
found ourselves in need of before, the ones whereby the time-
irreversibility of the behaviors of macroscopic physical systems
can be explained objectively, the ones whereby (as a matter of
fact) it seens reasonable to hope that epistemic probabilities
can be eliminated from physical science altogether,

The business of deciding whether or not to take this
suggestion seriously will presumably involve detailed
quantitative exanirations of a host of particular cases; but
there are reasons for being optimistic, even now, about how those
examinations will come out. “The point to bear in mind (and this
is more or less what the point of this whole note is) is that the
radical instability of the property of being an ‘'abnormal'
microstate will entail that any one of an enurmous selection of
different perturbations will be capable of getting the job done.
It would seem that we need only take care to insure that the
perturbations in question be genuinely random (unlike in the
‘environmental' scenariocs), and that they be frequent and
microscopic (unlike in +the standard guantum-mechanical

scenarios); and of course all ot that gets taken care of for us

in theories 1ike the Ghirardi, Rimini, and Weber's.
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Nonetheless, all of this will no doubt strike many readers
as suspiciously neat. Maybe it w:l1 be useful, then, to finish
up by briefly confronting vhat I wnaspect will turn out to be a
typical sort of objection. This one was brought to my attention
by Philip Pearle,

It goes like this: Consider an extraordinarily tiny gas, one
which consists of something on the order of 109 molecules. Even
gasses as tiny a: that are known to be very likely to sprecad out
(if space is available) over reasonable intervals cf time, and
yet gasses as tiny as that very unljkely to suffer even a single
GRW~type collapse over such an interval, and so an explanation of
the tendencies of gasses like that to evolve 1like that over
intervals like that in terms of collapses of the wave-functions
of their constituents is patently out of the gquestion.

What the correct explanation of thoge tendencies will need
to appeal to, I suspect, are collapses of the wave-functions of
the microscopic constituents of the containers of those gasses.

And so the collapse-driven statistical mechanics that this
note 1is about will entail that an extraordinarily tiny and
extraordinarily compressed and absolutely isolated gas Will have
no lawlike tendency whatever to spread out.

And it can hardly be denied that that runs strongly counter
to our intuitions.

What it does not run counter to, however (and this is what
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has presumably got to be important, in the long run), is our

empirical experience.

Referernces

1) "Microscopic" differences between states are to be
understood here, by the way, as differences which are much
smaller (and not merely smaller) than macroscopic ones; so that a
set 1ike {C} will necessarily contain a great number of non-

overlapping microscopic neighborhoods.

2) See, for example, J. M. Blatt, Prog. Theor. Phys., 22,

745, 1959,

3) See, for example, the discussions in J. von Neumann,

Mathematical Foundations of Quantum Mechanics (transl. by R. T.

Beyer, Princeton University Press, Princeton, 1955) and D. Bohm,

Quantum Theory (Prentice-Hall Inc., Englewood Clifts, New Jersey,

1951) .

4) sece, for exawple, P, A. M. Dirac, The Principles of

Quantum Mechanics (9xford University Press, Oxford, 1930).

5) G. C. Ghirardi, A. Rimini, and T, Weber, Phys. Rev. D34,
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470.

6) some second thoughts about this (which seem to me to be
embarrassing but not fatal to the GRW theory) are recorded in D.
Albert, "On the Collapse of the Wave Function" in Sixty-Two Years

of Ungertainty, A. I. Miller (ed.) New York: Plenum Press, pp.

153-65.




TIME REVERSAIL OF SPIN-SPIN COUPLINGS

A. PINES
Universily of California, Berkeiey

ABSTRACT

It is still commonly believed that the decay of order in a coupled many-body system
approaching thermodynamic equilibrium is irreversible. A famous example involves
the decay of transverse magnetization from coupled nuclear spins in a solid. The {ree
induction decay is analagous to the disappearance of order in a previously comp:essed
gas diffusing to fill a larger container.

-

Figure 1: Decay of magnetization in a system of coupled spins,
and analogy to diftusion in a lattice gas.

Of course it is recognized that, under unitary avolution, the order does not disappear,
but evolves into subtle inter-particle correlations. The question is whether the initial
order can be retrieved and, furthermore, whether the devzlopment of the correlations
can be observed experimentally. I shall show cxamples of coupled many-body spin
systems in which the apparently irreversibly decayed spin order is retrieved by time
reversal of the spin-spin couplings under Haeberlen-Waugh averaging.

Figure 2: FExperimentally observed decay of nuclear magnetiza-
tion and multinle-pulse induced echo during the frec induction
of *F spins in solid calcium fluoride.
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Unlike the Hahn spin echo in a system of uncoupled spins, which appears after a
single refocussing pulse, time reversal in the coupled system requires a prolonged
multiple-pulse sequence. Prior to time reversal the coupled system is, for most intents
and purposes, in equilibrium and appropriately characterized by a canonical deusity
operator. By means of coherent phase shifiing, it is possible to detect and follow
the time evolution of multiple-quantum spin coherences to high order (hundreds of
particles).
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Figure 3: Experimentally observed evolution of nultiple-
quanturn coherences arising from the development of correla-
tions among coupled ' H spins in solid hexamethylbenzene,

The muluiple-quantum coherences reflect the existence of evolving spin-spin correla-
tions (the subtle correlations that now sustain the original one-particle order). The
coherences cxhibit interesting examples of Abelian and non-Abelian geometric phascs,

References: A. Pines, NMR in Physics, Chemistry and Biology Hlustrations of

entific (1990); J. W. Zwanziger, M. Koenig, a.nd A l’mes, Bcrry s Pha.sc, Ann. Rev.
Phys. Chem., 41, 601 (1990); L. Emsley and A. Pines, Lectures on Pulsed NMR, Pro-
ceedings of the CXXIII School of Physics ”Enrico Fermi”, ed. B. Maraviglia, North
Holland (1994).




ELECTROMAGNETIC VELOCITY AND ACCELERATION OF NEUTRONS

by

C. R. Hagen
Department of Physics and Astronomy
Uuiversity of Rochester
Rochester, NY 14627

and

J. Anandan
Department of Physics and Astronomy
University of South Carolina

Columbia, SC 29208

Abstract

The issue of neutron acceleration by uniform electromagnetic fields is examined. Al-
though straightforward manipulation of the equations of motion implies such an cffect,
some doubt has continued to cexist as to whether it is in principle observable. To resolve
this matter a gedanken experiment is nroposed and anlyzed using a wive packet construc-
tion for the neutron beam. By allowing arbitrary orientation for the neutron spin as well
as for the electric and magnetic fields a nonvanishing acceleration of the center of the neu-
tron wave packet is found which confirms the predictions of the canonical formalism. It is
also shown that the difference between the canonical and kinetic momenta is in principle

observable and in agreement with what one obtains using operator mcthods.
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Although the motion of a neutral nonrelativistic spin-1/2 particle in a magnetic field i::
generally regarded as well understood, the corresponding problem with combined clectric
and magnetic fields continues to evoke discussion of underlying principles. Such a system

can be described by the Hamiltonian
1 1
H:z——p—y-[B——pXE] (1)
m mc

where p and m refer to the momentum and maes respectively of the particle (e.g., a
neutron). The mugnetic moment is g = 0 /2 with ¢ being the et of Pauli spin matrices.
It is assumed that the fields E and B are uniform and time independent. Upon caleulating

the commutators of H with p, x, and ¢ onc finds

. 1

x=p/m+ —— Exu (2)
p=0 (3)
. 1

a=7ax[B—-r;C-pxF,] . (4)

1t follows upon insertion of (4) into the time derivative of (2) that!
%=L Ex(uxB)+O0(E") . (5)
mc

Thus the inclusion of an electric ficld is seen to lead to a nonvanishing acceleration propor-
tional in lowest order to both |E| and |B|. It also implies that the canonical momentum p
does not coincide with the kinetic momemtum mv.

Although the overall consistency of the canonical formalism of quantum mechanies
would appear to offer no alternative to the result (5), there has been a recent smggestion?
that in fact the predicted acceleration is <ssentially unobservable. It should be noted,

however, that at least under the assumption of constant fields such a question must be

[<%

capable of being resolved unambigu: usly by a direct calculation based on the Schrodinger
equation. In particular a neutron which passes from a field free region to one described

by the Hamiltonian (1) can be viewed as being subject to a constant but spin dependent
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potential. Corresponding to the particular spin eigenvalues the potential barrier for fixed
p is then cither attractive or repulsive.

To settle th's issue one can imagine carrying out the following experiment. A wave
packet describing a neutron is allowed to propagate in the field free region z < 0 and
to enter the uniform ficld region z > 0 at normal incidence. The coordinate system is
chosen so that the center of the wave packet passcs through the origin at time ¢ . 0. It
is also assumed that the ncutron is totally polarized in the dircction of the unit vector
n. At a distance zp from the origin a detector is placed which measures the transverse
displacement of the beam as a function of zp to arbitrary accuracy. Since there can be
no possibility of carrying out such measurements without a transverse localization of the
beam, it is evident that the wave packet must be spread in at least one of the two transverse
wonicntum variables, Farthermore, o spreading in the z coordinate is required in order to
allow a time of flight to be inferred from the detector position zp.

Thus the spatial part of the wave function for z < 0, ¢ < 0 is given by

1/)(2’“: . "I) :/ ll]),dp _’_z_, ci(p-n')(r-u')—{-ip,z

(2m)?

L2 0 2
exp{ —1 (i—"—)-il)i t}f(p,,p -n')
2m

(6)

where 1’ is a unit vector in the z, y plane. The momentum space wave function f(p.,p-n')
is taken to be an even function in p-n' which iy peaked around the point p-n' = 0, p, = &,

It is normalized by the condition

dp.dp-n' .
[ B w1

While & Gaussian form for f(p,,p - n') would allow an explicit caleulation of the wave

function to be performed, it is not in fact required for this problem. It may also be noted
that o localization of the wave function in the sceond transverse direction is possible as
well; but is basieally irrelevant to the result.

When the wave pucket passes through the origin the usual reflection and transmission

effects are encountered although one clearly is interested only in the teansmitted part for
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the purpose of this work. Matching the function and its derivative at 2 = ( one finds that
the spin part is unaltered while the transmitted bean has a form identical to that given
by (6) provided that p, in the exponential ¢”+* is replaced by the momentum component
P: appropriate to propagation in the nonzero ficld region. The latter is obtained from the
equation

P -[B——l—pr] (M

me

where (to lowest nonvanishing order in E) it is the vector p which appears on the right hand
side of (7) in combination with E. Clearly, one could proceed at this point by cousidering
sepurately the two cigenmodes of propagation and determining the appropriate spin part
of the wave function by defining u spin basis with respect to the direction of the vector
B- ;;‘;;_p x E. Fortunately, a simpler and more clegant approach is possible which involves

calculating fi; as nomntrix in the spin space and using the projector

Py,=-(140'n}

DI

to include the initial polarization state of the beam,

To the required order one finds from (7) that

1
[;,::p,+z~"—’Z o [B— — pr]
2p e

L4

This then leads to the evaluation of < = n' > by the expression

! ] oo
<z-n'>= /(1(1 nYdz(x .711)/ fledPM@; n')
(2m}*
lpn) =" n" e +i(p,-p) )2

.12 2 fd N2 2
oxp [ EPRC O i L el 4 ,]
2m

fpeyp VL 0T

where .
. FIY 1 .

T < , Lk S S S (140-

Tr exp [1: 21)10' (B —pX E)} 5 (140 n)

(9)

.omy 1,
, iz — g (B~ —
exp [ 1 2, o —-— p X E)]

)



337

The evaluation of the trace is simplified by the observation that because of the antisym-
metry of the integrand in Eq. (8) under the simultaneous change of sign of = - n', p. n/,

and p' - n' only those terms in T which are odd in p - n' and p' - n' can contribute. Upon

writing
X izma-(B——l—pr)
P 2ps me
, 1 1
—C’+:|B—m——cprl o (1 Amcpr)S
whe -

= ™ s~ L
(C,8) = (cos,sm)[ 2 B —pX E|

and using 8 prime to denote the same quantities when p is replaced by ¢, it is first noted
that the CC' terms make no contribution to the trace. To the desired order one thus finds

for (9) the result

L B oy L
T= e §S'nxB-Ex(p p)mc
| me

P OS 1 C8) A n B x(p—p) L
+2(CS kCS)anLx(p p')

Upon inserting this into (8) it is observed that the eanonical commutation relations

imply that the combination (z - n')(p — p') becomes in' so that (8) reduces to

» U P
<z -n'> :/fip_,d(_p_ﬁ f(pe,p - n')[?

(2m
1 2 1 (10)
e &7 . AP ~ . '
[ e 7 S‘mx B)-(Exn') iclB] CSn-Exn

To complete the caleulation one notes that it is sufficient to work to lowest order in B and
B and to negleet corrections of the order of Ap, [k where Ap, is the wave packet width in
momentum space. This allows C and S to be replaced by 1 and myz|l|/2k, respeetively,

thereby yielding for (10)

1, 9 1
[ — 2 7
<$'11)—{—2-t ;r—l;n'~[Ex(‘y§an)]

(11)

1 1
tn' -EX: yn —
o z'yn mc}
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where z has been replaced by zp which in turn is related to the time of flight ¢t by 2p =
kt/m. This identification is made possible by virture of the fact that the wave packet is
localized in the z coordinate while its center moves with velocity k/m.

The verification of the expressions derived in ref. 1 for the acccleration and the
kinetic momentum is now immediate. For short times t Eq. (5) elenrly implies that there
should exist a 2 term in the mean transverse displacement whose cocfficient is one-half the
acceleration. It is striking that the calculation presented here yiclds an acceleration which
has precisely the veetor structure implied by the cauonical formalism. Also noteworthy is
tl - fact that the second term in (11) is linear in ¢ and corresponds to the uniform drift of
the particle beam implied by the difference between the canonieal and kinetic momenta as
indicated in Eq. (2). This terin (unlike the acceleration) requires no magnetic ficld and
one might therefore expect that it would offer fewer obstacles Lo an experimental detection,

One of us (CRH) acknowledges the support of U.S. Departiment of Energy Grant No,
DE-FG02-91ER40685.
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SECTION 8
QUANTUM REALITY AND PHENOMENOLOGY




A New Formulation of Quantum Mechanics

Yakir Aharonov
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Abstract

It is shown Lthat the Schrédinger iden that considers a particle as an extended
wave function is not wrong as is usually thought. The argument relics on a
new method of measurement — the protective measurement — which
measures the Schrédinger wave without disturbing it. However, to avoid
paraduxes we have aleo to accept a new formulation of quantum mechanics
which is bused on two state vectors instead of one, the usual (history) state
evolving toward the future und a second buckwnrd evolving (destiny) state.

I. The Staudard Interpretation of Quantam Theory

When Schridinger proposed his wave equation, there was much argument
about the physical meaning of the wave function, While Schrédinger helieved
that the wave function for a single pariicle represents an extended object that
was really moving in space, Born suggested that the wave function of a single
particle has only a probabilistic meaning. That is, any experiment leoking at
a single particle will find that particle at only one location, but will never sec
it a8 an extended object. Only if we have an ensemble of particles, can we sec
the full implication of the wave function. For an ensemble the quantity
y(x)y(x) is proportional to the probability of finding the particle at the point
x. We are able to infer the extended nature of a single particle only indirectly,
for example, by analyzing a two slit experiment.

There are three general arguments usually presented as to why we can never
see the wave function of a single particle. These arguments seem convincing,
but we will later show why they are misleading.

1. In the laboratory we never see an extended object. If we make a
measurement of an electron, we will always see it as a point on a

KZY|
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photographic plate, or a single track in a cloud chamber. It will always
appear as a localized object, never as an extended object.

. The second argument appeals to unitarity. Suppose we have two

possible wavefunctions in the Schridinger representation, y; and .
These are Lwo different descriptions in space since, in general, the two
functions are not orthogonal vectors in the Hilbert space. Suppose we
now say that there is a measurement that can distinguish between the
states Y1 and Yg which are not orthogonal. That means there exists a
measuring device with some state ¢ such that i€ the system is in stute
Y1 uic sianic of the measuring device will go to ¢1, and if the system is
in state g the measuring device state will go to ¢3. To be able to
distinguish between the two results, we must have ¢1 and ¢
orthogonal. However, this violates unitarity since the initial states
were not orthogonal.

The usual argument is to have a large number of particles described by
the same wavefunction . That is, we start with a set yi(xy), yi(xy),
. Y1{xN) and a set ya(x1), yalx2), ...,welxN). Using these two
ensembles, we can distinguish between the two states, since the scalar
product between any W) and Yy is less than 1. The stalar product
botween the states of itwo sulfficiently large ensembles of particles is
essentially zero. Once aguin the stutistical interpretation seems Lo be
indicated.

. The last argiment is the most important since it forees us to adopt the

two-vector formulation, Supposc at time ¢, there is a quantum particle
whose wavefunction is non-zcro in a large region. Let ur assume there
18 an experiment which can determine that the particle 1s spread over
this large region. We do this experiment and soon afterwards we do the
usual experiment and find the particle localized at one position. If we
were studying a charged particle, huge currents must flow to conserve
charge. Otherwise there would be another frame of reference where the
charge is not conserved. Thus the wavefunction cannot collapse
infinitely fast. There is no way that an extended object can suddenly
become a localized one.

We would like Lo be able to observe the full wave function. The wavefunction
obeys the Schridinger equation which tells us we have a vector in Hilbert
space which evolves in a deterministic fashion. All the mystery in quantum
macclianies oceurs because we are told that we cannoi observe the
wavelunction. What we can obscerve is not what s described by the
mathematics, The connection between what can be observed in the laboratory




343

and what is described by the Schrodinger equation is only probabilistic, It
would be beautiful if we could sec the wavefunction directly.

I1. Protective Experiments — An Example

The main argument for the reformulation suggested here 1s that there
are experiments which protect the wavefunction so we can measure the
wavefunction without destroying it. We call such experiments, protective
experiments. Shelly Glashow suggested calling these protective experiments
“in vive” experiments. This is in analogy with biological experiments which
preserve the life in a cell of small living objects. We shall consider below an
example in which the protection is due to energy conservation.

Suppose we are given a particle described by a known Hamiltonian with
discrete, non-degenerate eigenstates. We are told that the particle is in a
definite cigenstate and we are asked to measurc its wavefunction. A
particular example of this would be an electron in the ground state of a
hydrogen atom. In the standard interpretation, we measure the energy of this
state and say that this is all that can be known. However, quantum
mechanics contains much more information than this. It tells us that there is
a wavefunction at each position in space. This is an iafinite amount of
additional information for a single particle, We will now discuss how we can
extract this information without disturbing the wavefunction,

Measurement in an ideal gquantum-mechanical experiment has been
described by von Neumann, We let H, be the Hamiltonian of the free system.
This could be the Hamiltonian of an clectron in the atum where, for
simplicity, we take the proton mass as infinitely large. We let A represent the
quantity we wish to measure, and let ¢ be a variable of the measuring device.
Then, the Hamiltonian of the sysiem is

H = H, + glt)q A. (1)

where g(¢) ix an interaction parameter, We choose

g(t) - ;’i)‘ e—r 1ti/T (2)

Here T is the effective time of the measurement and g, is a constant
representing the strength of the coupling between the system and the
measuring device.

There are two interesting limits. The first is the impulsive limit where we
take T — 0 and the other is the adiabatic limit where we take T — . The
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usual experiment is to take the impulsive limit in which the experiment lasts
an extremely short time, In this case we can ignore H,, and the momentum
conjugate to ¢ will be changed by one of the eigenvalues of A. We are only
able to get probabilities for this change and hence cannot measure the
wavefunction.

In the adiabatic limit the experiment lasts a long time while the coupling
between the measuring device and the particle becomes very weak and
approaches zero. Surprisingly, even though the coupling goes to zero, we can
still get information about the particle and we get this information without
changing the wavefunction. Indeed, in the adiabatic limit the ground state
wave function is the ground state of the full Hamiltonian during the full time
of the measurement. The only thing that can change is the phase.

We will first look at an eigenstate of ¢ and then at a superposition of
eigenstates. For an eigenstate, the adiabatic limit becomes a normal
perturbation problem. The energy goes to the original energy plus a
correction that goes to zero, that is

E = Eyp + gt) g (A) (3)

where (A) is the cxpectation value of A calculated with the original
wavefunction, Now E — Eg — 0 but the total phase accumulated is

B0 d = [Bodt + g q(A). @

Since quantum theory is a linear theory, what is true for g 28 an eigenstate is
true for a superposition of cigenstates. If we start with the measuring device
in a superposition of ¢’s there will be a different phase associated with each
value of . If p 18 the momentum conjugate to g, the change inp will be 8p =
gol{A). So we can measure not only the eigenvalue of an operator, but the
average of an operator in a given state,

We can also clearly make N simultancous measurements with N measuring
devices, each measuring a different Ay, The Hamiltoniun in this case is

N
H = Hy, + g(t) ZQnAn- (5)

n=o0
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If we choose the sct of variables A, to be the projection operators in different
regions of space, the results for each Ap will be proportional to W*(x,) Wlx,) at
this point x, and the entire set measurcs Y*(x) Y(x) in its full glory in all
space.

1I1. Refutation of the Three Arguments of Section I

We must now show why the three seemingly very convincing arguments of
Section I were misleading.

1. The first argument is easily discounted. The previous experiments
were simply not the right experiments. Up to now, we have only
designed experiments that would “kill” the wavefunction by looking for
a localized particle. These were not "in vivo" experiments. In analogy
with our biological example, if you do the wrong experiment on an
organism, you will kill it. We previously were doing the wrong
experiment on  and thus “killed” it.

2. The unitarity issue is resolved in an interesting way. The only states
that were protected are nondegenerate eigenstates of the Hamiltonian,
These eigenstates are orthogonal to each other, 80 no contradiction
wilh unitarity arises. If we try to measure superpositions of two such
states the system will collapse to one state or the other. We are still
able to see the state in its full glory, but we see only one state out of
the set of completely orthogonal nondegencerate eigenstates of the
Hamiltonian. If we want to sce other states such as a superposition of
cigenstates, we must find a different protection since consgervation of
energy does not prescrve them,

The issue is not to think of measurement as just determining what we
don’t know. The real isgue of measurement theory is determining what
can manifest itself. If we have an electron pagsing through two slits,
we can measure its wave function for a single particle and see the full
glory of the interference spectrum. It is only necessary to devise the
right, protection.

3. Complete resolution of the third argument will be presented in the
next section but it is interesting and fruitful to consider what happens,
if while performing a protective measurement in one region of space, a
usual position measurement i8 performed at seme other location and
finds the particle there. Can we viclate causality and send gignals
faster than light? The answer is no. As an example suppose we have an j
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electron in the ground state of the hydrogen atom as shown in the
figure.

"Probability” L

Qstribution

T
Regior of the Location of the
protective experiment non-prot: lve
experi ant

We are doing our protective experiment in the vicinity of the proton and
find the wave function density corresponding to the ground state. While
we are doing our experiment some other physicist makes a non-protective
measurement at a large distance L away from us and finds the whole
particle there. This contradicts the outcome of our protective experiment.,
To avoid possibility of casual connection between these experiments, we
must complete our protective experiment in a time T less than [/c. For
finite time experimrent we no longer can be sure that the eiectron remains
in the ground st .te. There is a finite probability of exciting the state,
which goes like ¢ ET This is the probability to make a mistake. On the
other hand, the probability to find the particle at location L is
e VzmE

where m is the mass of the particle and E is the binding energy. The only
way to violate causality is to have a binding energy greater than 2mc2. We
have a nice result. There is no way to consistently describe a single
particle in relativistic quantum theory if the binding energy excecds
2mc?,

IV. The Two-Vector Reformulation of Quantum Theory

To resolve violation of Lorentz covariance in the wavefunction collapse
problem we must reformulate quantum mechauics. It is possible (o do this by
using the two-vector formulation. The two-vector formulation can be
described as follows. Suppose we have a region of space where an experiment
is performed. For example. -+ a scattering experiment we start with an
incoming state, call it y1 allow this prepared state to interact and
produce a set of outgoing states corresponding to different outcomes. We want
to select only particles that go into a particular outgoing state Y. In classical
physics, if we had a well-defined incoming state there would be only one
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outgoing state. In quantum mechanics there will be an ensemble of outgoing
states. This allows us to define new quantuin ensembles that do not have an
analogy in classical physics. These are called pre-selected and post-selected
ensembles, They are characterized by giving two boundary conditions on the
particles. These are the boundary conditions at the start of the experiment
and the boundary conditions at the end of the experiment. That is, if an
incoming state i can produce the following set of outgoing states yg, Y3,
etc., then we form separate ensembles for those experiments that produce the
pair (y1,y/2) and those that produce (yy,y3), etc.

This suggests characterizing each quantum particle in the pre-selected and
post-selected ensemble by two states. Each quantum particle is described at
any instant by two vectors that we will call the history vector and the destiny
vector. This concept will enable us to explain how a distribution that was
extended in space can suddenly be replaced by a distribution that is peaked
near a given position.

What we measure is not p(x} = Y*(x) ¢/(x) but the density

Pl = S A E)
.[\ll*z(x') Yi(x") dx’

—00

where Y is the history veclor and Yy is the destiny vector. In all protective
experiments what is measured is not the average of either of these states but
the above combination. In the usual non-protective experiments, the hisiory
vector and the destiny vector were the same, so this distinction was not
obvious.

Let us consider again the paradoxical situation of the argument 3. Let the
initial state Y1 1. a superposition of the two localized states. The final state
y2 is one of thesc localized states. We might obtain it by just looking and not
finding the particle in another place. The paradox is how the particle “jumps”
instantaneously to the first location just by not observing it in the second
location. The way out is that the particle was 1n the first location during the
whole period between the two measurements! Indeed, the two vector density
P12(x) is non-zero only when both y; and w2 are not zero, i.e., only in the first
location. Simailarly we can resolve the problem of how an extended particle
becomes localized. The product of an extended particle and a localized
particle is alw.iys a localized particle. It is localized all the time.




348

We resolve argument 3 by thinking of a quantum system as being described
by two vectors, the history vect~r and the destiny vector, rather than by one
vector. We no longer violate ca ality since the description depends also upon
what happens later, not just upon what has happened. If you change your
mind about what you will measure, the destiny vector must be changed all
the way back to the beginning just as we would have to change the history
vector if we had decided to perform a different experiment. This is analogous
to the Einstein-Podolsky-Rosen (EPR) experiment. In EPR, we have already
learned that if we take a single system that is already correlated to another
gystem, and make a measurement on one of the systems, it immediately
changes the stat of the other system. In an ensemble, the probability
distributinn remains unchanged, so we cannot use this to send information
faster than light. In the same way here, the future state changes the present
for an individual quantum system; but it doesn’t change the probability
distribution for an ensemble. Therefore, it cannot be used to transfer
information backwards in time.

Conclusion

We have described a new type of experiment, the protective measurement,
through which we can observe the extended wavefunction of a single particle
in its full glory. This reality of the wavefunction strongly supports a new
interpretation of quantum mechanics, the 2-vector formulation, in which
there are 2 vectors describing a quantum system, the usual vector
propagating from the past and a second one propagating backwards from the
future. We show how this interpretation resolves the arguments given
against the observability of the wavefunction of a single particle.
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ABSTRACT

We report results of an investigation of relativistic causality constraints on the
measurability of nonlocal variables. We show that mecasurability of certain nonde-
generate variables with entangled cigenstates contradicts the principle of causality,
but that there are other, certainly nonlocal, variables which ecan be measured with-
out brealting causality. We show that any causal measurement of nonlocal variables
must erase certain local information. For example, for a system of two spin-1/2 par-
ticles, cven if we take the weakest possible definition of verification measurcment,
verilication of an entangled stete must erase all local information.

1. Measuring Momentum of a Particle

As early as 1031, Landau and Peierls! showed that relativistic causality im-
poses new restrictions on the process of quantuin measurement. Although some of
their arguments were not precise, it was commonly accepted that we cannot mcasure
instantaneously nonlocal properties without breaking relativistic causality.

The first example is the measurement of momentnm of a particle. Consider
a particle localized in a small region, Measurement of its momentum, irrespeetive
of the outcome, will spread the particle all over the space. Theve will be a non-
zero probability to find the particle at o very large distance from its original place
immediately after the (justantancous) momentum measurement, so it seems that the
particle moves faster than light. However, Lhis argument is not decisive. Relativistic
causality states that it is impossible to send a signel ith superluminal velocity.
It does not forbid instantaneous measurc.nent of momontum, say at ¢ = 0. The
instantaneous measurement interanction will take place all over the space and it
can create particles everywhere. Thus, the probability of finding the particle at
a given location after the momentum measurement might be independent of what
we did to the particle located far away before the measurement. Therefore, the
possibility of instantaneous momentwn measurement docs not lead automatically
to the possibility of sending signals with superluminal velocity.

Nevertheles:, if we can measure the momentum of « spin-1/2 particle without
affecting its spin, then we can violate causality. Indeed, let us assume that we know
that at time ¢t = 0 the momentum measurement will be performed. At the time
t = —¢ we decide to prepare the state of the particle *up” or “down” according
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to the signal we want to send. Then we can measure the spin component of the
particle which is detected at time ¢ = +¢ far from its original location and thus send
information with superluminal velocity. (The probahility of finding the particle at
a given place is very small, but we can use a large ensemble of identical particles
and thus we can build a reliable superluminal transmitter.)

2. Constraints on Nonlocal Measurements of Two Spin-1/2 Particles

Although momentum mcasurement is a basic problem, it is still not the
simplest example we may consider. Significant progress in understanding causality
constraints on quantum measurement was made by considering an even simpler
example: measurements of spin variables of two spin-1/2 particles scparated in
space. This is the system on which Bohm and Aharonov? and later Bell? analyzed
the EPR argument and reached far-reaching conclusions regnrding the nonlocal
structure of quantum theory.

In order to show how measurability of nonlocal variables contradicts rel-
ativistic causality let us consider an operator with the followirg nondegencratc
eigenstates:

1) = 1), 1),
W‘?) = Il 1)

-1 ) 1
f3}) _ﬂ(l il D2+ 11l 1)2) )

1
[¥a) :ﬁ(] Dl D2 =1 D1l 1)2)

This operator corresponds to a nonloval variable because its eigenstates are nonlocal.
We call the state of the composite system nonlocal when it cannot be represented
as a product of states corresponding to localized parts of the system; these stutes
are also known as entungled states.

Let us show that the measurability of this varinble contradicts relativistic
causality. To this end we perform the following set of measurements:

1) We prepare state | 1) of particle number 2 a long time before the time
t=0.

ii) At time t = -c we prepare state | 1), or | }); of particle nuinber 1 according
to the message we want to send frou particle 1 to particle 2,

iii) At tine ¢ = 0 we measurc the variable defined by the nondegenerate
eigenstates of Eq. (1).

iv) At the time ¢ = ¢ we measure the spin component of particle 2.
The two events, choosing the spin of particle 1 and mensurement of the spin of
particle 2, are space like separated, and thercfore must be causally disconnected.
But if we choose spin “up” for particle 1, then the state of the composite system
before the time t = 0 is | 1},] 1),, the measurement at the time ¢ = 0 does not change it
(since it is an eigenstate), and thus the spin measurement of particle two wil! yield
“up” with probability one. If, instead, at the time t = —¢, we put, the particle 1 in
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the state “down] then the state of the composite system before the measurement
(iii) is | 13,1 1),- This state is not one of the eigenstates of the nonlocal operator,
and therefore the measurement at time t = 0 will change it. Since the scalar product
between | 1),] 1), and the eigenstates is not vanishing only for the cigenstates |¢s)
and |y4), the state after ¢ = 0 will be one of those. But for both |¢a) and |y,) the
probability to find the spin “up” for particle 2 is just 1/2. We have shown that the
possibility of measuring nonlocal variable described by eigenstates (1) allows us to
change the probability of the result of a spin measurement performed on particle
2 by ucting on particle 1 a time only 2 before the measurement on particle 2; and
since the distance between the particles might be larger than 2ec, this procedure
represents a superhuninal signal transmitter,

3. Measurable Nonlocal Variables

The examples above may lead s to believe that mcasurement of any nonlo-
cal variable breaks relativistic causality. This, in fact, was generally believed until
Aharonov and Albertt found a method involving solely local interactions (hence con-
sistent with the causality principle) which docs allow us to measure certain nonlocal
variables. In particular, we can measure the variable o4, + 02,. The method applies
the standord von Neumann measuring procedure to a measuring device consisting of
two parts which were prepared in an entangled state before the measurement. Each
part of the mcasuring device interacts with one of the particles for a short time,
and is observed imicediately after by a local observer. The combined observations
of the two observers (one at each particle) determines whether the state is |¢1), [¢q)
or belongs to the subspace spunned by [¢5) and [y, The feature of this method is
that while it measures o, + o3, = 0, it does not measure the spin of each particle
sepurately. The detuils of the method of nonlocul measurements can be found in
Ref. (5).

It might scem that the measurability of the operator o4, 4- 09, has something
to do with its having a complete sct of cigenstates which are not entangled. But this
is not the explanation. The next example shows an operator with nandegenerate
vigenstates that are all entangled but which is, nevertheless, measurable by local
interactions. The eigenstates of the nondegenerate operator are

1) =7‘§(| Dil 2+ Dl Da)
) =\/i§(| Bl )2 =1l 1) o
Is) =%(| Dl D2 41 11l 1)a)

) =;‘~FZ\. ™l Ba = | 1] 1)a)

This operator can be measured® using a sct of nonlocal operators with degenerate
eigenstates (such as oy, + 02,), where the particles 1 and 2 are far from one an-
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other. Recently? the measurability of operators for two spin-1/2 particles has becu
analyzed, and it was shown that the only nieasurable nondegenerate operators are
those with eigenstates of two possible types:

AERSREN
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with spin polarized “up” or “down” aloug directions z and /.

Operators of type {3u), although they refer to two separated spins, are cffee-
tively local. They can be measured siinply by measuring the z component of spin
of the first particle and the 2 component of spin of the second particle, Operators
with the cigenstates (3b) are truly nonlocal. They can be measured? in the same
way as an operator with cigenstates given in Eq. (2) (4 particular case of Eq. (3b)).

On the other hand? mewsurability of any nondegenerate operator with eigen-
states not equivalent to the forns (3a) or (3b) implies the possibility of superluminal
communicatio, i.e., violatiou of relutivistic causality.

4. State Verification Measurements

A measurement of a nondegenerate operator is also a state verification mea-
sureient for all its vigenstates., ‘T'he weakest possible definition of a state verification
measurenient which requires only reliability of the me usuxuncnt ib the verification
weasurements of the state [y) must always yield the answer “yes” if the measured
gystem has the initial state |go), and wmust always yield “uo” if the system s ini-
tially in an orthogonal statc. One may suspect that the verification of a state with
canouical form (Schiidt decomposition) different fromn

\/—(||11|T: l'{ll)lll)) (4)

(the form of tle~ cigenstates in (3b)) contradicts relativistic causality; i.c., that
verification of a state

[a) = ol Tahul Tada + B Lol Lardas el £ 181340 (5)
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allows superluminal communication. Indeed, it has been shown® that the type
of measurements of entangled states described above, i.e. nondemolition vperator
measurements with solely local interactions, cannot measure the state given by the
form (5).

However, an unmeasurable quantity should not represent physical reality. If
we want to consider the quantum state as a physical (versus purely mathemati-
cal) concept, it must be measurable. We do know how to prepare this state (the
preparation procedure is aliio frequently called measurement), But the state (5) can
also be mensured using o new type of verification measurement named an ezchange
measurement$ The ides iy to make simultaneos short local interactions with parts
of the measuring device such that the states of the system and the mceasuring de-
vice will be exchanged. The novel poiut in this mcthod is that locel interactions
exchange nonlocal states. The result of the meusurement cannot be read by two
local observers; we must bring the two parts of the measuring device to one place,
In addition, this procedure has another unconventional property. The final state of
the system is completely independent of its initial state: it is just the initial state
of the measuring device. The state of the systenn 1s completely erased by this stute
verification measurement,

It has recently been proven” that any verification of the state

[0 = ol Ll Loda+ 01 Ll Leda, £ 0 (©)

crases all local information. The probable outcome of a local spin measurcment
performed after the state verification measurement is independent of the state of the
composite systemn prior to the state verification. The example considered above of o
measurable nondegeuernte operator (2) teivially fulfills this result: for all eigenstates
we have the property that the probability for any outcome of local spin measurement
is the sammne, There is no local informution after this nonlocal measurement.

5. Conclusions

Let us formulate the last result for the somewhat more general case of o
system of two separated particles withh several orthogonal states.  Consider the
Schmidt decomposition of a state |¢e) of this composite system:

o) = D aali)ilia. M

Here [i); and |Ji); are local orthonormal bases of state: of the two particles. Let
us denote by H and 7 the Hilbert spaces of part 1 and part 2 respectively,
and by H§Y and B the subspaces of HO and 7@ whicli are spanaed by the base
vectors |i); and |i), corresponding to cocflicients o # 0. Then for all initial states
which belong to the Hilbert space {7 @ 1™, the probabilities p(y) for results of
local measurciuents in part 1, performed after verification of the state |¢o), have no
dependence on the initind state.
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Thus, the erasing effect of the proposed “exchange” measurements is a gene-
ric property of any reliable, cansal state verification measurement. The full impli-
cations of this result are not yet cleur. It already has helped complete the analysis
of measurability of nondegencrate operators discussed above. It also has been used
to show” that measurability of certain ideal measurements of the first kind contru-
dicts relativistic causality, thus placing a serious doubt concerning the possibility
of gencralizing axiomatic quantum theory to the relativistic domain.

We would like to conclude by stressing the importance of measuring nonlocal
properties via local i1teractions (with separate parts of the measuring device pre-
pared in an entaugled state). The same method can be used for so-called “multiple-
time” measurements® which open the way to many new quantum phenomena?
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QUANTUM ANOMALIES AND THREE FAMILIES
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ABSTRACT

Chisal anomalics and their cancellation arc a fundamental guantum effect in relativistic
ficid tbeory and can be fruitfully regarded as a topological phenomenon related to the
Aharanov-Bohm effect. A possible relationship: of such anomaly cancellation to the
occurenice of three quark-lepton families is discossed.

It is a delightful honor to write for the sixticth birthday of Yakir Aharanov with
whom I have enjoyed many stimulating discussions about physics. Although best known
for his contributions to the foundations of quantum mechanics, Yukir's broad knowledge
makes him a uscful collcague concerning any topic in theoretical physics.

In gauge ficld theory, chiral anomalics reflect a fundumental aspect of quantum
theory and are a topological phenomenon related to the Aharanov-Bohun effect [1].

Gauge field theory is the basis of the snccessful standard model of particle
interactions. In such a (heory one first constructs a gauge-invariant lagrangian
L (¢n, 9,9p) with bare quantitics. At the quantum level, one wishes to renormalize to

Lp = Ly (¢, Sudn) + Counter-terms

such that LR is invariant under a gauge invariance isomorphic to the original one. This
requires satisfaction of Taylor-Slavnov identities.

One peculiar Feynman diagram, a closed fermion loop with three gauge hosons
attached (triangle diagram) spoils the possibifity of such renormalization because of the
chiral anomaly [2). Unless this anomaly is cancelled by appropriate choice of chiral
fermion representation of the gauge group the ficld theory is internally inconsistent and
violates the requirements of renormalizability and unitarity.

The anomaly may be caleulated locally through the Feynman diagram, or by
global topological consideraticns of the Atiyah-Singer index [3]. The second approach
makes cicar how ihe chival anomaly [2] is 2 sequel to the AB effect [1].

Having established that connection, T now relate the AB effect further to the flavor
question: why are there six flavors of quark u,d,s.c,b,t? It has long been thought that the
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replication of the quark flavors may be a result of anomaly concellation. For example, in
1979 there were attempts using SU(N) grand unification to find simple representations
whici. lel to three faniities under an SU(5) subgroup [4]; that program had some
successes but ¢*d not reaily answer the basic question in a convincing manner.

In the standard model the chiral anomaly is cancelled between quarks and leptons
in each family, This cancellation can be made to look non-trivial; e.g. for Y2 the
particles (u, d); G, d, (v, ¢). and & give the contributions

6(1/6)3 +3(= 2/3)3 + 3(1/3)3 + 2(- 1/2)3 + (1)3

which add to zero. Actually, this reflects the vanishing, average electric charge. In any
case, it gives no insight on why the fluvor number equals six.

Cur proposai [5] is to extend the standard clectroweak gauge group to
SUQ)L x U(1)x and to zssign the leptons to antitriplew c.g. (¢, Ve, 6¥), with X = 0 and
similarly for the second and third familics. The quarks of the first family are in the triplet
(u,d,D)L, where Q(D) = 4/3 and similarly (c,s,S)L for the sccond family. In the third
family the quarks are assigned to an antitriplet (b,t, T)L, with Q(T) = + 5/3. The X values
are respectively — 1/3, ~ 1/3, + 2/3 leading to a cancellation of anomalics between the
familics each of which is separately anomalous.

To break the syiametry to SU(2)L, x U(1)y the Higgs sector contains a triplet with
X =+ 1. All three cxotic quarks acquire mass, as do five gauge bosons: the Z’ and
dileptons (Y--, Y7), (Y*++, Y4). Because of Z° — Z mixing the rclevant scale is limited
below by M(Z7) > 300 GeV and M(Y) > 230 GeV, this last being coincident with the
empirical lower limit [6]. At first sight, the new scale appears to be unrestricted from
above but this is not the case for an interesting reason. The group theory of embedding
SU(2) x U(1) in SU(3) x U(l) requires that sin2 8 < 1/4, Phenomenologically
sin? 6 = (.233 at & = Mz and increases with |, becoming 0.25 at p = 2.2 TeV. This
limit is singular, however, and gy becomes strong-coupled so the upper limit is more
nearly M(Z7) < 1 TeV and both the Z” and Y are hence accessible to the supercollider.

In summary, the chiral anomaly of quantum theory dictates the chiral fermion
content. Explication of flavor predicts dileptons (and Z° plus exotic quarks) at SSC.

Incidentally this "331" model gives insight into other features of the standard
model from a new perspective, such as flavor-changing neutral currents and the GIM
mechanism, charge quantization, possible neutrino masses and grand unification, These
questions are under investigation.

This work was supported in part by the U.S. Department of Energy under Grant
No. DE-FG05-95ER-40219,
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EXPERIMENTS PURSUANT TO DETERMINING
THE DURATION OF BARRIER TRAVESAL IN QUANTUM TUNNELING

M. J. Haginann and L. Zhao
Depariment of Elecirical and Computer Engineering, Floride International University
Miamu, FL 48199, USA

ABSTRACT

Lorer/STM experiments based on modulation of the barrier height 1y the electric
field of light will be used to examine the duration of barrier traversal. The STM
built for these mensurements has decreased noise and improved stability. Our cal-
culations nuggest that u 670 min laser diode ot a power density of 100 W/em? will
reduce the tunneling current, which is contrary to most phenomena caus - b lager
ilhnnination,

The question of tunncling limes (i.¢. traversal, reflection, and dwell times)
has practical significance and hus heen the focus of much inlerest und controveisy
(1]. Measurements of tunnel conductance in heterostructures [2] and experiments
with Josephison junctions [3] suggest that o specific time is associated with barrier
traversal. Quantum mechanics provides useful results regarding tunneling but does
nol describe the motion of particles within the classically forbidden region.

A variety of theoretical procedures hus been used to determine tunneling
tiznes, with different results {1]. Most of these methods give a definite value of
traversal time for a specific problein, which appuers inconsistent with the statis-
tical nature of quantum phenomena. Distributions of tunneling times have been
predicted using Feynman path integrals [4] and Bohm's causal interpretation of
quanium mechanies {5], but they do not agree.

We model tunneling [6] on the basis of energy fluctuations consistent with
the uncertainty principle. Cohen [7] postuluted that the probability of a fluctuation
decreases exponentinlly with the product of the mugnitude AL and duration At,
which product we refer to as the action of « fluctuation. He did not treat tunneling
times, and considered only the most probable fluctuations (minimum action permit-
ting tunneling), thus classically deriving the WKB solution for an opaque barrier.
In previous work we modeled the full range of Huctuations to obtain distributions
of the time for traversing static rectangulir barriers, For lacge barriers these dis-
tributions are leptokurtic and centered ot the semiclassical time (the classical time
for traversing the inverted barvier [8]). The distributions sre platykurtic (broad)
for small barriers,

Several experimental methods bave been used to examine the duration of
tunneling. 1} Analyses of measured tunne! conductance (2] suggest that the response
of image charges varics with barrier length, The location of the crossover from static
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to dynamic response appears consistent with the semiclassical traversal {ime, but
there is much scatter in the data so this result is not definitive. 2) The effect
of a magnetic field on tunnel conductance was studied {9], but the data may be
explained without reference to tunneling times {10]. 3)Tunneling dynamics was
studied in a shunted Josephson junction [3] but this involves tunneling between
the states of a device and does not directly relate to tunneling by particles. 4)
An operational tunneling time was determined from current rectification in a laser-
illuminated scanning tunneling microscope (5TM) [11], but vhe measured decrease
in current with increasing barrier length may be explained without reference to
tunnelirg times.

We have begun a project in which laser/STM experiments will be muade
with the objective of determining the duration of Larrier traversal, but our work is
based on barrier modulation rather than current rectification used in earlier studies
[11]. Laser illumination of an §TM junction modulates the barrier height. Theory
suggests [8) that tunneling has two distinct regimes us a function of frequency, the
crossover between them occurring when the angular frequency of the modulation
equals the reciprocal of the traversul time.

We are completing a novel STM designed for these experiments. The circuit
is similar to that of Park and Quate {12}, but customized for decreased noise and
increased stability. ‘The preamplifier is chopper stabilized, and periodie multivalued
illumination is used with boxcar sigial uveraging. Double sample and hold circuits
minimize the droop while feedbuck is disengaged when the luser is pulsed. The
quadrant electrodes on the piezoelectric tube scauner are fed with balanced X and
Y supplies, and the inner electrode is fed with an unbalanced 7 supply to provide
orthogonal positioning of th. tip. Power MOS-FETs arc used in place of bipolar
transistors in the high volt. « sections to increase isolation and iower noise. A
differential micrometer with a crogsed-roller translution stoge provides increased
mechanical stability,

We have modeled the effeet of a laser on the current in an STM. A rectungular
barrier was assumed, but more appropriate expressions for the potential [13) will
be implemented in [ater studies. We divide the barrier length into N scgments of
length d/N, such that each part is swall enough that the potential is approximately
a constant V during transit by an clectron, We assume that an energy fiuctuation
causes the particle to traverse each scgment, and set AE = V — B + mv1/2, where
the particle has mass m, velocity v, and nonperturbed encrgy 1. In the present
calculations, within each segment we consider only the most probable fluctuations,
those with the least action permitting tunneling. Thus, within cach segment the
velocity v = /2(V=F)/m, the action of the fluctuntion A = dy/2m(V = Ej/N, and the
traversal time 7' = d\/m/2(V = E)/N which is the semiclassical value [6).

In each simulation the values of ‘I' aud A are calculated within each segment,
using the instantaneous value of the modulated potential for V, and summed to
determine T, and A, which are the traversal time and action for tunneling th) wugh
the entire barrier This calculation is made for M different values of the modulation
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phase at which the electron enters the barrier. For each entry phase the transmission
is determined by assuming the probability of the fluctuation is proportional to
exp(—A,/h). Finally, the mean value is normalized by dividing by the value without
modulation, to obtain the relative value of the current with modulation. The values
of N and M are increased untill these purameters are found to have negligible effect.
The results of several simulations are presented in the following two figures,

Figure 1 shows the relative current as a function of the modulating-wavelength
for 4.0 eV electrons with a basricr length of 6.0 4 and height of 5.0 V. The three levels
of modulation correspond to illumunation at different power densities. Since there
is a distribution of traversal times, instead of the definite values of time impiicit in
other analyses [8], the transition between the regime for low and high modulation
frequencies is broad. Our Jong-term objective is to examine this crossover by mea-
suring the current when two or more lasers sequentially illumine an STM junction
with similar power densities at different frequencies,

If the modulation frequency is high enough, Fig.1 shows that barrier modu-
lation tends to inhibit tunneling. Figure 2 shows the relative current as a function
of the level of modulation for 4.0 €V electrons with a barrier height of 5.0 V and
& modulating wavelength of 670 nm. The data in Fig.2 suggest that for barrier
lengths between 6 and 10 A the current decreases as the power density is increased.
In our first experiments we will determine the effects of power density on tunneling
current when the STM junction is illuminated with a 670 nm laser diode. A power
density of 100 W/cm? , providing adequate modulation, may be obatined with a 20
mW laser diode focused to a minimal spot size.

A variety of phenomena occur in laser/STM experiments [14] including cur-
vent rectification, photo-assisted tunneling, thermal-assisted tunneling and thermal
expansion, as well as the effects which we have modeled. In our initial experiments
the use of a visible laser would decrease current rectification [15). The relatively
low power density would reduce thermal effects as well as current rectification, but
all of these effects must be considered. Subsequent experiments made to examine

the crossover in Fig.1 would be more difficult to interpret because the competing
phenomena have different frequency dependence.
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Figure Captions

Fig. 1. Relative current vs. nodulating-wavelength for 4.0 eV electrons with
barrier length = 6.0 A and height = 5.0 V.

Fig. 2. Relative current vs. level of modulation for 4.0 eV electrons with
barrier height = 5.0 V and modulating wavelength = 670 nm.
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ABSTRACT

The non-perturbative solution to the strong CP problem with magnetic monopoles
ag originally proposed by the author is described. It is shown that the gauge or-
bit space with gauge potentials and gauge tranformations restricted on the space
boundary and the globally well-defined gauge subgroup in gauge thecries with a
6 term has a monopole structure if there is a magnetic monopole in the ordinary
space, The Dirac’s quantization condition then ensures that the vacuum angle ¢
in the gauge theories must be quantized to have a well-defined physical wave func-
tional. The quantization rule for 0 is derived as § = 0,27 /n (n # 0) with n being the
topological charge of the magnetic monopole. Therefore, the strong CP problem is
automatically solved with the existence of a magnetic monopole of charge +1 with
§ : - £2x. This is also true when the total magnetic charge of monopoles are very
large (In] > 10%2x). The fact that the strong CP violation can be only so small or
vani:hing may be a signal for the existence of magnetic monopoles and the universe
is open.

1. Introduction and Summary of the Main Results

Yang-Mills theories! and their non-perturbative effects have played one of
the most important roles in particle physics. It is known that, in non-ubelian gauge
theories a Pontryagin or ¢ term,

8
I

L' ‘“VAG F;:,,F:,,‘ (l)
can be added to the Lagrangian density of the system due to instanton? effects
in gauge theories. This term can induce CP violations for an abitrary value of 6.
Especially, such an effective 8 term in QCD may induce CP violations in strong inter-
actions. In our discussions relevant to QCD, 4 is simply used to denote 8+ arg(detM)
effectively with M being the quark mass matrix, when the effects of electroweak
interactions are included. However, the experimental results on the neutron clectric

tPermanent addresa
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dipole moment strongly limit the possible values of the ¢ in QCD {< 10-*, modulo
2x for example). This is the well-known strong CP problem. One of the most
interesting understanding of the strong CP problem has been the assumption of
an additional Peccei-Quinn U(1)pq symmetry?, but the observation has not givend
evidence for the axions® needed in this approach. Thus the other possible solutions
to this problem are of fundamental interest.

Recently, & non-perturbative solution to the Strong CP problem with mag-
netic monopoles has been proposed originally by the author®. In our solution®, it is
proposed that the vacunm angle with magnetic monopoles must be quantized. Qur
quantization rule is derived essentially by two different methods. This is given by
8 =0, or 8 = 2xN/n (n # 0) with integer n being the relevant topological charge of the
magnetic monopole end N may be fixed as 1 in the method 1 and is an arbitrary
integer in the method 2. The first method! is to show the existence of a monopole
structure in the relevant gauge orbit space in Scherodinger formulation™®, and using
the Dirac quantization rule for having a well-defined wave funtional. The second
method is to show that there exist well-defined gauge transformations which will en-
sure the quantization of § by the constraints of Gauss’s law due to the non-abelican
electric charges curried by the magnetic monopoles proportional to ¢ as noted 1a Ref.
21 and generalized in Ref.22 to the non-abelian case for the generalized magnetic
monopoles'’,

Thercfore, we conclude that strong CP problem can be solved due to the
quantization of ¢ in the presence of magnetic monopoles, for example monopoles of
topological charge n = %1 with § = £2x, or n > 2x10° with 8 € 10*. Moreover, the
existence of non-vanishing magnetic flux through the space boundary implies that
the universe must be open. In this note, we will briefly describe and review our
solution to the strong CP problem with ms.gnetic monopoles with the first method.

2. Quantization Condition on # and Solution to the Strong CP Problem

The main idea of our discussions is based on the follows. A wave functional
in the gauge orbit space corresponds to a cross section!? of the relevant fiber burdle
for the theory. Topologically, if there is a non-vanishing gauge field as the curvature
in the gauge orbit space, then the flux of the curvature through a closed surface
in the gauge orbit space must be quantized to have & cross section’™®, Physically,
this is equivalent to say that the magnetic flux through the closed surface must be
quantized according to the Dirac quantization condition in order to have a v-ell-
defined wave functional in the quantum theory.

In this method, we will extend the method of Wu and Zee in Ref.7 for the
discussions of the effects of the Pontryagin term in pure Yang-Mills theories in the
gauge orbit spaces in the Schrodinger formulation. This formalism has also been
used with different methods to derive the mass parameter quantization in three-
dimensional Yang-Mills theory with Chern-Simons term™8. It is shown in Ref. 7
that the Poniryagin term induces an abelian background fielc or an abelian structure

e - -
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in the gauge configuration space of the Yang-Mills theory. In our discussions, we
will consider the case with the existence of a magnetic monopole. We will show
that magnetic monopoles®'° in space will induce an abelian gauge field with non-
vanishing field strength in gauge configuration space, and magnstic flux through a
two-dimensional sphere in the induced gauge orbit space on the space boundary is
non-vanishing. Then, Dirac condition®=!® in the corresponding quantum theories
leads to the result that the relevant vacuum angie ¢ must be quantized as 6 =
2x/n with n being the topological charge of the monopole to be generally defined.
Therefore, the strong CP problem can be solved with the existence of magnetic
monopoles.

We will now consider the Yang-Mills theory with the existence of a magnetic
monopole at the origin. Our derivation applies generally to a gauge theory with an
arbitrary simple gauge group or a U(1) group outside the monopole. This gauge
group under consideration may be regarded as a factor group in the exact gauge
group of a grand unification theory. Note that there can be Higgs field and unifi-
cation gauge fields confined inside the monopole core, which will be ignored in our
discussion outside the monopoles.

As we will see that an interesting feature in our derivation is that we will use
the Dirac quantization condition both in the ordinary space and restricted gauge
orbit space to be defined. The Lagrangian of the system is given by

‘)
L= / d“:{—-}F[,’,F““" + gyt B FO), (2)

We will use the Schrodinger formulation and the Weyl gauge 4° = 0. The conjugate
momentum corresponding to A? is given by

8L . [
w = Th AT+ gt @)

In the Schrodinger formulation, the system is similar to the quantum system of a
particle with the coordinate ¢; moving in a gauge field A;{(g) with the correspondencet-

q.-(t) — A:-’(x,t), (4)
Ai{g) — Al (A(x)), (5)

where
FAG)) = oyt ©)

Thus there is a gauge structure with gauge potential A in this formalism within
a gauge theory with the 4 term included. Note that in our discussion with the
presence of a magnetic monopole, the gr1ge potential A cutside the monopole
generally need to be understood as well di .1ed in each local coordinate region. In
the overlapping regions, the separate gauge potentials can only differ by a well-
defined gauge trarsformation'®. In fact, single-valuedness of the gauge function
corresponds to the Dirac quantization condition'®. For a given r, we can choose two

i
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extended semi-spheres around the monopole, with 8 € [x/2 — §,7/2 4 6}0 < § < x/2)
in the overlapping region, where the 4 denotes the 6 angle in the spherical polar
coordinates. For convenience, we will use differential forms!® in our discussions,
where A = Alz!, F = } Fjudaidz*, with 7 = dA + A? locally. For our purpose to discuss
about the effects of the abelian gauge structure on the quantization of the vacuum
angle, we will now briefly clarify the relevant topological results needed, then we
will realize the topological results explicitly.

With magnetic monopoles, we need to generalize the gauge orbit space of
ordinary gauge theories to include the space boundary which is noncontractible
with non-vanishing magnetic flux quantized according Dirac quantization condi-
tion. With the constraint of Gauss’ law, the quantum theory in the finite space
region in this formalism is described in the usual gauge orbit space ¥/¢. The i/
is the space of well-defined gauge potentials and ¢ denotes the space of continu-
ous gauge transformations with gauge functions mapping the space boundary to a
single point in the gauge group. Due to the exitence of magnetic monopoles, the
gouge transformations on the space boundary $? can be non-trivial, the physical
effects of the well-defined gauge transformations need to be considered. As it is
known that!?, only the gauge transformations generated by the generators commut-
ing with magnetic charges may be well-defined globally. On the space boundary, 4
will also be used to denote the induced guuge configuration space with gauge po-
teutials restricted on the space boundary, and ¢ also denotes the cuntinuous gauge
transformations restricted on the space boundary and well-defined gauge subgroup.
Then we will call corresponding &/§ as restricted gauge orbit space. Collectively,
they will be calied as the usual space for the finite coordinate space region and the
restricted space on the space boundary. There should not be confusing for the no-
tations used both for the usual spaces and restricted spaces. As we will see that the
magnetic charges up to a conjugate transformation are in a Cartan subalgebra of
the gauge group, then on the space boundary S, we need to consider a well-defined
gauge subgroup G = U(1) for the quantization of 8. Similar to the usual gauge orbit
space on the compactified coordinate space by restricting to gauge functions map-
ping the space boundary io a single point in the guage group, the restricted gauge
orbit space is well-defined since the space boundary $? is compact.

Note that the physical meaning of the restricted gauge orbit space can be
understood as follows. Let Wpny,(A(x)) denote the physical wave functional and
Wpnys(A(x)) |52 be its restriction on the space houndary $? which actually only de-
pends on the direction of x. Then, the ¥4, |52 must be invariant under the gauge
transforma fions well-defined on the entire space boundary, Namely the W,,,, |5 is
defined in the restricted gauge orbit space. However, in the finite space region, the
Wpnys(Alx)} for finite x is only required to be invariant under the gauge iransforma-
tions with gauge function going to the identity at the spatial infinity. Namely, it
is defined the usual gauge orbit space. The entire ¥,uy, i3 then well-defined in the
generalized gauge orbit space as described.

Now consider ihe following exact homotopy sequence'® both for the ususal
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and restricted spaces:
Ty () 22 T (U /6) 22 M _1(G) S Moy (W) (N 2 1), (1)

Note that homotopy theory has also been used to study the global gauge anomalies
14-16 egpecially by using extensively the exact homotopy sequences and in terms
of James numbers of Stiefel manifolds!”. One can easily see that & is topologically
trivial, thus Iy (@) = 0 for any N, Since the interpolation between any two gauge
potentials 4, and A,

A =tA; (1 —_ t)Az (8)
for auy real t is in & (Theorem 7 in ilef.11;, and Ref.7). since 4, is transformed as a
gauge potential in each local coordinate region, snd in an overlapping region, both
Ay and A; are gauge potentials may be defined up to a gauge transformaticn, then
A¢ is a gauge potential which may be defined up to a gauge transformation, namely,
Ay e 4. Thus, we have

0 24 Iy U/G) 25 My oy(G) 2 0 (N 2 1). (9)
This implies that
N U/6) = My_1(G) (N 2 1). (10)

As we will show that in the presence of a magnetic monopole, the topological
properties of the system are drastically different. This will give important conse-
quences in the quantum theory. In fact, the topological properties of the restricted
gauge orbit spaces are relevant for our purpnse since as we will see that only the
integrals on the sp houndary $? are relevant in the quantization equation for the
8. Now for the re: | spaces, the main topological result we will use is given by

(/) = 11 (G) = i(G) & Ua(G), (11)

for a well-defined gauge subgroup G. As we will see that in the relevant case of
G = U(1) for our purpose 113(G) = 0, The condition 34 /G) # 0 corresponds to the
existence of a magnetic monopole in the restricted gauge orbit space. We will first
show that in this case F # 0, and then demonstrate explicitly that the magnetic flux
J52F #0 can be nonvanishing in the restricted gauge orbit space, where # denotes
the projection of F into the restricted gauge orbit space.

Denote the differentiation with respect to space variable x by d, and the
differentiation with respect to parameters {t; | i = 1,2...} which A(x) may depend on in
the gauge configuration space by 6, and assume d§-+64=0. Then, similar to A = A,dz*
with 4 replaced by a, i, x, A = AfL%de!, F = [ F{,L%deidz* and {r(L°LY) = - 6% for a
basis {L° | a = 1,2,...,rank(G)} of the Lie algebra of the gauge group G, the gauge
potential in the gauge contiguration space is given by

A= [ SN AR R). (12)
Using Eq.(6), this gives

9 g
A= gi/d:’zq“}“j“k(x)é./&?(x) = —ﬁju tr(SAF), (13)
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with M being the space manifold. With ¢F = —Da(8A4) = —{d(64) + ASA - A4}, we
have topologically

Feid= [ tr = =8
F=bA=55 /M tr{EADA(BA)] = 15 _/M dir(6ASA) = o /0 Mtr(6A6A). (14)

Usually, one may assume A — 0 faster than 1/r as x — 0, then” this would give
F = 0. However, this is not the case in the presence of a magnetic monopole.
Asymptotically, » monopole may generally give a field strength of the form?-14.7
Fy = ;#f‘ih(?)nG(*). (18)
with # being the unit vector for r, and this gives A — O(1/r) a8 x — 0. Thus, one
can see easily that a magnetic monopole can give s nonvanishing fleld strength 7
in the gauge configuration space. To evaluate the F, one needs to specify the space
boundary M in the presence of a magnetic monopole. we now consider the case
that the magnetic monopole does not generate a singularity in the space. In fact,
this is so when monopoles appear as a smooth solution of a spontaneously broken
gauge theory similar to 't Hooft Polyakov monopole®. For example, it is known
that!® there ure monopole solutions in the minimal SU(5) model. Then, the space
boundary may be regarded as a large 2-sphere $? at spatial infinity. For our purpose,
we actually only need to evalucte the projection of ¥ into the gauge orbit space.
In the gauge orbit space, & gauge potential can be writien in the form of

A=y lag +y¢'dg, (16)

for an element a € #/G and a gauge function g € ¢. Then the projection of a form
into the gauge orbit space contains only terms proportional to (5a)" for integers n.
We can now write

6A = g~ '[6a - D.(699~ g. (17)
Then we obtain 0 p
=_ Y S -1
A=—grs [ eritsa)+ gy [ rirDueee) (18)
where f =da+a®. With sore calculations, this can be simplified as
L -1
A=A+ s,tr[féay ], (19)
where )
A= -5 /Mm f8a), (20)
is the projection of A into the gauge orbit space. Similarly, we have
[ .
F=qs . tr{[8a — Daf6gg~")}[8a — Da(bgg~ )]} (21)
or P
F=F- ?F/ tr{6aDa(6g97") + Da(8gg9~ )6a — Da(Sgg~ ") Da(bg9~ 1)}, (22)
53
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where

- ]
= — (% .
F e /;1 trffada) (23)

Now ali our discussions will be based on the restricted spaces. To see that the flux
of # through a closed surface in the restricted gauge orbit space 4/g can be nonzero,
we will construct a 2-sphere in it. Consider an element a € #/¢, and a loop in G. The
set of all the gauge potentials obtained by all the gauge transformations on & wiih
gauge functions on the loop then forms a lcop C! in the gauge configurations space
U. Obviously, the a is the projection of the loop C! into 4/¢. Now since (W) =0
is trivial, the loop C! can be continuously extented to a two-dimensional disc D? in
the & with 8D? = C!, then obviously, the projection of the D? into the gauge orbit
space is topologically a 2-sphere §7 c 4/G. With the Stokes’ theorem in the gauge
configuration snace, We now have

/ T:/ sA= [ A (24)
D? D? fa3!
Using Eqs.(19) and (24) with §a =0 on C*, this gives
[ - "
[ 4=zt [ [ (45)
Thus, the projection of the Eq.(26) to the gauge orbit space gives
.6 _

where note that in the two 5% are in the gauge orbit space and the ordinary space
respectively, We have also obtained this hy verifying that

f tr/b tr{6aDy(6gg™") + Dy(899~1)8a — D,(899™ ) Da(bgg™)} = 0, (27)
D? 53

or the projection of [, ¥ gives [, F.

In quantum theory, Eq.(26) corresponds to the topological result M,(U//g) =
I,(G) on the restricted spaces. The discussion asbout the Hamiltonian equation
in the schrodinger formulation will be similar to that in Refs.7 and 8 including the
discussions for the three-dimensional Yang-Mills theories with a Chern-Simons term.
We need the Dirac quantization condition to have a well-defined wave functional in
the formalism. In the gauge orbit space, the Dirac quantization condition gives

[ 7=, (28)

with k being integers. The Dirac quantization conditicn in the gauge orbit space
will be clarified shortly. Now let f be the ficld strength 2-form for the magnetic
monopole. The quantization condition is now given by'?

e;r:p{/s" [} =exp{Go} = erp{fl'xZﬂ‘H,-] €2z (29)
: i=1
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Where Go is the magnetic charge up to a conjugate transformation by a group
element, H; (i=1, 2,...,,r=rank(G)) form a basis for the Cartan subalgebra of the
gauge group with simple roots & (i=1,2,...,r). We need non-zero topological value
to obtain quantization condition for 8. As it is known from Ref.12, only the gavge
transformations commuting with the magnetic charges can be globally weli-defined,
only those gauge transformatjons can be used for determining the global tepological
quantities. Consider g(x,t) in the well- defined U(1) gauge subgroup commutative
with the magnetic charges on the ¢!

JH
(.t = 4rmt ._Q’LL. , 30
gl =.t) |sg59= exp{drm ; <a"a‘_>] (34,

with m being integers and t ¢ [0.1]. In fact, m should be identical to k according to
our topological result I:(///G) = M (¢). The k and m are the topological numbers on
each side, Thus, we obtain in the case of non-vanishing vacuum angle ¢

0= (ngo0), (51)
Where we define generally the topological charge of the magnetic monopole as
n=-2<6,8> (32)

which must be an integer!”. Where

I 2(1.'

"= s (s)
the minus sign is due to our normalization convention for Lie algebra generators.
Note that the parameter t of g(x,t) in eq.(30) may be regarded as the time parameter
topologically when the time evolution is included, the two end points of the closed
loop then correspond to the time infinities. The g(x,t) is not & constant in the entire
spacetime, and does not generate a Nother symmetry. The non-trivial topological
properties ensure thut the non-trivial spacetime dependence will be maintained
when continuous Lorentz transformations are implemented. Consequently, the re-
quirement of gauge invariance corresponding to the g(x,t) will not eliminate uny
charged configurations.

‘Therefore, we conclude that in the presence of magnetic monopoles with
topological charge £1, the vacuum angle of non-abelian gauge theories must be +2r,
the existence of such magnetic monopoles gives a solution to the strong CP problem.
But CP cannot be exactly conserved in this case since § = £2x correspond to two
different monopole sectors. The existence of many monopoles can ensure § — 0, and
the strong CP problem may also be solved. In this possible solution to the stroug
CP problem with ¢ < 10-%, the total magnetic charges present are |n{ > 2r10?. L'his
may possibly be within the abundance sllowed by the ratio of monopoles to the
eatropy!?, but with the possible existence of both monopoles and anti-monopoles,
the total number of magnetic monopoles may be larger thaa the total mugnetic
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charges. Generally, one needs to ensure that the total number is consistent with
the experimental results on the abundance of monopoles. The n = +2 may also
possibilely solve CP if it is consistent with the cxperimental observation,

Note that we only considered non-singular magnetic monopole in the space.
For 't Hooft Polykov monopole, the full gauge group inside the monopole is sim-
ply connected, it will not give any boundary contribution to the term in Fq.(26).
However, outside the monopole, the gauge symmetry is spontaneously broken, it
is known that the unbroken gauge group cannot be simply connected to have
monopole solutions. For example, in SU(8) model, inside the monopole, SU(5)
is simply connected; outside the monopole the exact gauge group G=5U(3)xU(1)
vatisfies I(G) = 2. We expect that in general, the GUT monopoles are smooth
solutions, and therefore cannot have a mathematical boundary at a given short dis-
tunce around the monopole relevant to our boundary contribution. Therefore, the
realistic world meet the condition to have our solution to the strong CP problem,

The effect of a term proportional to ¢#2 4y, Fy, in the presence of magnetic
charges was first considered?® relevant to chiral symmetry. The effect of a simi-
lar U(1) 0 term was discussed for the purpose of considering the induced electric
charges?! a8 quantum excitations of dyons associated with the 't Hooft Polyakov
monopole and generalized magnetic monopoles!®?!, Note that since our solution
needs non- vanishing magnetic flux through the space boundary, this implies that
ouly an open universe car be consistent with our solution. Note that the relevauce
to the U4(1) problem is discussed in Ref. 23.
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